A Displacement-Rotation Algorithm

  • A
  • Thread starter Thread starter Muhammad
  • Start date Start date
Muhammad
Messages
4
Reaction score
0
The attached sketch shows an object which can move in x-y plane and rotate around z axis only. The movements are small and in the order of micrometers.

Point a, b and c are the locations of measurement. Each of these points have measuring devices which can give linear displacement in micrometers.

If the object is displaced by external force, the measuring devices will give linear displacement values. However, with these 3 displacement values, I would like to develop an algorithm which can give me overall displacement of the object along x and y axes as well rotation around z axis.

rotation matrix interpretation.webp
 
Physics news on Phys.org
You have three vector equations of the form <br /> a&#039; = R_z(\theta)a + t which gives six equations in three unknowns; this system is overdetermined and may not have a solution. Your best option is to choose \theta and t to minimize the error <br /> \|a&#039; - R_z(\theta)a - t\|^2 + \|b&#039; - R_z(\theta)b - t\|^2 + \|c&#039; - R_z(\theta)c - t\|^2
 
Thank you for your reply.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top