I Divergence Theorem and Gauss Law

AI Thread Summary
The divergence theorem relates the surface integral of the electric field vector, E, to the volume integral of its divergence, while Gauss's law connects the same surface integral to the volume integral of charge density, ρ. It is established that div(E) equals ρ/ε₀, indicating that the electric field's divergence is proportional to charge density. The discussion emphasizes that these integral equations hold for any volume and its boundary, but practical applications often require considering small volumes to simplify calculations. The local form of Gauss's law is derived by approximating these integrals, reinforcing the connection between electric fields and charge distributions. Understanding these relationships is crucial for applying Maxwell's equations effectively.
Caglar Yildiz
Messages
19
Reaction score
0
Divergence theorem states that
$\int \int\vec{E}\cdot\vec{ds}=\int\int\int div(\vec{E})dV$
And Gauss law states that

$\int \int\vec{E}\cdot\vec{ds}=\int\int\int \rho(x,y,z)dV$
If $\vec{E}$ to be electric field vector then i could say that
$div(\vec{E})=\rho(x,y,z)$
However i can't see any reason for that since $\rho(x,y,z)$ to be unit charge
 
Physics news on Phys.org
Caglar Yildiz said:
Divergence theorem states that$$
\int \int\vec{E}\cdot\vec{ds}=\int\int\int div(\vec{E})dV
$$ And Gauss law states that $$\int \int\vec{E}\cdot\vec{ds}=\int\int\int \rho(x,y,z)dV
$$ If ##\vec{E}## to be electric field vector then i could say that ##div(\vec{E})=\rho(x,y,z)##
However i can't see any reason for that since ##\rho(x,y,z)## to be unit charge
Hi. (Use double $ for displayed, double # for in-line ##LaTeX## ).

Nevertheless, ## \operatorname {div} \vec E = { \rho\over \epsilon_0 }## is one of the Maxwell equations. So ## \left | \vec E \right | \propto \rho## as you would expect.
 
The point is that your integral equations are valid for any volume ##V## and its boundary ##\partial V## (which of course is a closed surface):
$$\int_{\partial V} \mathrm{d}^2 \vec{F} \cdot \vec{E}=\int_V \mathrm{d}^3 x \rho(\vec{x}).$$
This is not very useful in practice, because integrals are not as easy to use as derivatives. The idea thus is to make the volume very small around some specific point ##\vec{x}##. On the right-hand side of Gauss's Law you can make ##V## so small that ##\rho## doesn't vary too much over its extension, i.e., you can write
$$\int_V \mathrm{d}^3 x' \rho(\vec{x}') \simeq \rho(\vec{x}) V.$$
Now to the left-hand side. Think of the volume as a little cube with edges parallel to a Cartesian coordinate system. It's best to draw the meaning of the integral to see that the surface integral can be approximated by
$$V (\partial_x E_x(\vec{x})+\partial_y E_y(\vec{x}) + \partial_z E_z(\vec{x}))=V \mathrm{div} \vec{E}(\vec{x}).$$
Now you can cancel the little volume ##V## from both sides of the equation to get the local form of Gauss's Law, which is one of Maxwell's equations (here written in Heaviside-Lorentz units, where you don't have the confusing conversion factors as in the SI units):
$$\mathrm{div} \vec{E}(\vec{x})=\rho(\vec{x}).$$
 
vanhees71 said:
The point is that your integral equations are valid for any volume ##V## and its boundary ##\partial V## (which of course is a closed surface):
$$\int_{\partial V} \mathrm{d}^2 \vec{F} \cdot \vec{E}=\int_V \mathrm{d}^3 x \rho(\vec{x}).$$
This is not very useful in practice, because integrals are not as easy to use as derivatives. The idea thus is to make the volume very small around some specific point ##\vec{x}##. On the right-hand side of Gauss's Law you can make ##V## so small that ##\rho## doesn't vary too much over its extension, i.e., you can write
$$\int_V \mathrm{d}^3 x' \rho(\vec{x}') \simeq \rho(\vec{x}) V.$$
Now to the left-hand side. Think of the volume as a little cube with edges parallel to a Cartesian coordinate system. It's best to draw the meaning of the integral to see that the surface integral can be approximated by
$$V (\partial_x E_x(\vec{x})+\partial_y E_y(\vec{x}) + \partial_z E_z(\vec{x}))=V \mathrm{div} \vec{E}(\vec{x}).$$
Now you can cancel the little volume ##V## from both sides of the equation to get the local form of Gauss's Law, which is one of Maxwell's equations (here written in Heaviside-Lorentz units, where you don't have the confusing conversion factors as in the SI units):
$$\mathrm{div} \vec{E}(\vec{x})=\rho(\vec{x}).$$
Hi
Why did you put $$d^2$$ and $$ \vec{F}$$? I saw it on wikipedia too but did not get the idea.
 
BvU said:
Hi. (Use double $ for displayed, double # for in-line ##LaTeX## ).

Nevertheless, ## \operatorname {div} \vec E = { \rho\over \epsilon_0 }## is one of the Maxwell equations. So ## \left | \vec E \right | \propto \rho## as you would expect.
Well after your reply, i went to wiki and i saw the derivations of those equetion. Also thanks for $$ thing :) i did not know.
 
Caglar Yildiz said:
Hi
Why did you put $$d^2$$ and $$ \vec{F}$$? I saw it on wikipedia too but did not get the idea.
##\mathbb{d}^2 \vec{F}## is my convention for the surface-element vector. If your surface is parametrized with generalized coordinates ##q^k## (##k \in \{1,2 \}##) then
$$\mathbb{d}^2 \vec{F}=\mathrm{d} q^1 \, \mathrm{d} q^2 \; \frac{\partial \vec{x}}{\partial q^1} \times \frac{\partial \vec{x}}{\partial q^2}.$$
 
Thread ''splain this hydrostatic paradox in tiny words'
This is (ostensibly) not a trick shot or video*. The scale was balanced before any blue water was added. 550mL of blue water was added to the left side. only 60mL of water needed to be added to the right side to re-balance the scale. Apparently, the scale will balance when the height of the two columns is equal. The left side of the scale only feels the weight of the column above the lower "tail" of the funnel (i.e. 60mL). So where does the weight of the remaining (550-60=) 490mL go...
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Back
Top