Do bosons contradict basic probability laws?

In summary, the conversation discusses the concept of mutually exclusive events and how they relate to probability theory. It is explained that for distinguishable particles, the probabilities of different distributions are mutually exclusive and add up to the total probability. However, for bosons which are indistinguishable, the probabilities of different distributions do not add up in the same way. This is because the probability distribution depends on the state in which the particles are prepared, and different states can have different probabilities for the same event. The conversation also touches on the idea that what can be measured in an experiment can affect the probabilities observed.
  • #106
PeroK said:
Each particle in a bubble chamber is essentially an isolated system. The particles do not interact with each other and are clearly not in thermal equilibrium.

Also, these lines are not continuous. At the atomic level they are formed by a sequence of discrete collisions. They only look continuous at a macroscopic scale.
Let's think of the gas of clusters which is monitored by 3D-video.
Even if there are no long range forces between the clusters they would still collide and form a system that tries to achieve thermal equilibrium, just like an ideal gas. The question is whether this equilibrium will be that of distinguishable or indistinguishable particles.

I realize that the lines won't be continuous even in a video, but they would suggest a straight classical path, from which I would conclude that it's always the same particle on a given path.
 
  • Skeptical
Likes weirdoguy
Physics news on Phys.org
  • #107
Philip Koeck said:
Let's think of the gas of clusters which is monitored by 3D-video.
And if you had a 3D video of a hydrogen atom then you'd see precisely where the electron was at all times and could plot its classical orbit round the nucleus.

You can't just pretend that there is no such thing as QM. That if you have a 3D video camera that QM will just "go away".
 
  • Like
Likes Vanadium 50
  • #108
Well, such a 3D cam itself cannot exist because of QT. One should also be aware that classical statistical physics is incomplete. Boltzmann and Gibbs had a lot of problems with particularly the distinguishability of classical particles (Gibbs's paradox, how to gauge phase-space cells, etc.), all of which are solved with many-body QT of indistinguishable particles, and that the distributions are rather Bose-Einstein and Fermi-Dirac distributions than Maxwell-Boltzmann distributions is an empirical fact, explaining a lot of other problems related to a classical statistical model.
 
  • Like
Likes DrClaude and PeroK
  • #109
Philip Koeck said:
Let's think of the gas of clusters which is monitored by 3D-video.

Let's close this thread since it is now degenerating into personal speculation.
 
  • Like
Likes vanhees71

Similar threads

Replies
12
Views
1K
Replies
3
Views
1K
Replies
0
Views
780
Replies
7
Views
2K
Replies
5
Views
1K
Replies
17
Views
3K
Replies
21
Views
3K
Back
Top