- #1
Gene Naden
- 321
- 64
O'Neill's Elementary Differential Geometry, in problem 3.4.5, asks the student to prove that isometries preserve covariant derivatives. Before solving the problem in general, I decided to work through the case where the isometry is a simple inversion: ##F(p)=-p##, using a couple of simple vector fields: ##V(p)=(x,y,z)## and ##W(p)=(x^2,0,0)##. I was surprised to find that the covariant derivative changes sign and is not preserved. Have I made an error? Here is the statement of the problem:
Let F be an isometry of ##R^3##.
For each vector field V let ##\bar{V}## be the vector field such that
##F^*(V(p))=\overline{V}(F(p))## for all p.
Show ##\overline{\nabla_{V} W}=\nabla_{\overline{V}}\overline{W}##
The covariant derivative of W is defined as ##\nabla_VW=W(p+tV)^\prime(0)##
The tangent map (derivative map) of F is defined as ##F^*(v_p)=\frac{dF(p+tv)}{dt}|_{t=0}##
Here is my work:
##\nabla_V W=\nabla_{(x,y,z)}W=\frac{d(W((x,y,z)+t(x,y,z))}{dt}|_{t=0}=\frac{d((x+tx)^2,0,0)}{dt}=(2x^2,0,0)##
##\overline{\nabla_VW}(-p)=F^*((2x^2,0,0)_{x,y,z})=\frac{dF((x,y,z)+t(2x^2,0,0)}{dt}|_{t=0}=
\frac{d(-x-2x^2t,0,0)}{dt}=(-2x^2,0,0)##
##q=-p##
##\overline{\nabla_VW}(q)=(-2x^2,0,0)##
##\overline{W}(-p)=F*((x^2,0,0)_{(x,y,z)}=\frac{dF((x,y,z)+t(x^2,0,0)}{dt}|_{t=0}=\frac{d(-x-tx^2,0,0)}{dt}=(-x^2,0,0)##
##\overline{W}(q)=(-x^2,0,0)##
##\overline{V}(-p)=F^*((x,y,z)_{x,y,z})=\frac{dF((x,y,z)+t(x,y,z))}{dt}|_{t=0}=\frac{d(-x-tx,-y-ty,-z-tz)}{dt}
=(-x,-y,-z)##
##\overline{V}(q)=(-x,-y,-z)##
##\nabla_{\overline{V}}\overline{W}(q)=\nabla_{(-x,-y,-z)} (-x^2,0,0)=\frac{d(-(x-tx)^2,0,0)}{dt}=(2x^2,0,0) \neq \overline{\nabla_{V} W}##
Let F be an isometry of ##R^3##.
For each vector field V let ##\bar{V}## be the vector field such that
##F^*(V(p))=\overline{V}(F(p))## for all p.
Show ##\overline{\nabla_{V} W}=\nabla_{\overline{V}}\overline{W}##
The covariant derivative of W is defined as ##\nabla_VW=W(p+tV)^\prime(0)##
The tangent map (derivative map) of F is defined as ##F^*(v_p)=\frac{dF(p+tv)}{dt}|_{t=0}##
Here is my work:
##\nabla_V W=\nabla_{(x,y,z)}W=\frac{d(W((x,y,z)+t(x,y,z))}{dt}|_{t=0}=\frac{d((x+tx)^2,0,0)}{dt}=(2x^2,0,0)##
##\overline{\nabla_VW}(-p)=F^*((2x^2,0,0)_{x,y,z})=\frac{dF((x,y,z)+t(2x^2,0,0)}{dt}|_{t=0}=
\frac{d(-x-2x^2t,0,0)}{dt}=(-2x^2,0,0)##
##q=-p##
##\overline{\nabla_VW}(q)=(-2x^2,0,0)##
##\overline{W}(-p)=F*((x^2,0,0)_{(x,y,z)}=\frac{dF((x,y,z)+t(x^2,0,0)}{dt}|_{t=0}=\frac{d(-x-tx^2,0,0)}{dt}=(-x^2,0,0)##
##\overline{W}(q)=(-x^2,0,0)##
##\overline{V}(-p)=F^*((x,y,z)_{x,y,z})=\frac{dF((x,y,z)+t(x,y,z))}{dt}|_{t=0}=\frac{d(-x-tx,-y-ty,-z-tz)}{dt}
=(-x,-y,-z)##
##\overline{V}(q)=(-x,-y,-z)##
##\nabla_{\overline{V}}\overline{W}(q)=\nabla_{(-x,-y,-z)} (-x^2,0,0)=\frac{d(-(x-tx)^2,0,0)}{dt}=(2x^2,0,0) \neq \overline{\nabla_{V} W}##