Do My Improper Integral Solutions Converge or Diverge?

  • Thread starter Thread starter mat331760298
  • Start date Start date
  • Tags Tags
    Integrals
mat331760298
Messages
13
Reaction score
0
1. Determine whether the following diverges or converges. If converges, evaluate it.
a) integral from 1 to infinity of: 1/(2x^2 + x) dx
b) integral from 0 to 1 of: 1/(2x^2 + x) dx

I just want to check my answers. I got a) diverges and b) converges with value of ln|3/2|. Do these answers sound right? I would appreciate some feedback, thanks.
 
Physics news on Phys.org
If you switch your answers for a) and b), it's right.
 
You had a 50/50 chance and you blew it ;)

How did you got to your conclusions?

Basically you need to find an upper/lower bound (i.e. a simpler integral that you know how to evaluate) and show that the bound converges/diverges then the original integral also converges/diverges.
 
i don't see how the answers are opposite lol maybe someone can show me a) so i can compare to my work
 
mat331760298 said:
i don't see how the answers are opposite lol maybe someone can show me a) so i can compare to my work

You haven't shown your work yet. If you do that maybe we can figure out what's wrong.
 
haha looked it over and when i did integration i had ln(x) + ln(2x+1) instead of ln(x) - ln(2x+1). makes sense now
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...

Similar threads

Back
Top