Do Time-ordering and Time Integrals commute? Peskin(4.22)(4.31)(4.44)

In summary: T\left\{ \cdots\phi \left( t\prime_1 \right) \phi \left( t_1 \right) \cdots \phi \left( t_n \right)... \right\}\\ &\cdots\\ &=\int_{t_0}^t{d}t_1\cdots dt_nT\left\{ \cdots\phi \left( t\prime_m \right) \cdots \phi \left( t_n \right)... \right\}\\ &=\int_{t
  • #1
George Wu
6
3
TL;DR Summary
In Peskin's QFT textbook, according to the explanation below(4.22), the Time-ordered exponential is just a notation, however in the derivation of (4.31),the Time-ordered exponential seems more than just a notation.
In Peskin P85:
1683566820582.png

It says the Time-ordered exponential is just a notation,in my understanding, it means
$$\begin{aligned}
&T\left\{ \exp \left[ -i\int_{t_0}^t{d}t^{\prime}H_I\left( t^{\prime} \right) \right] \right\}\\
&\ne T\left\{ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2H_I\left( t_1 \right) H_I\left( t_2 \right) +\cdots \right\}\\
\end{aligned}$$
However in the derivation of (4.31):
1683567804588.png

A way to derivate this is: Jens Wagemaker (https://physics.stackexchange.com/users/103623/jens-wagemaker), Why can the time-ordered exponentials be brought to the right?, URL (version: 2023-05-06): https://physics.stackexchange.com/q/762829
Here is his way of derivation:
Note that the time ordering operator is like a sorting algorithm, hence it doesn't matter if we permute something before applying the time ordering operator. In particular we can perform some additional time-ordering by inserting an additional time-ordering operator:
$$\begin{aligned}
A&=T\left\{ \phi _I(x)\phi _I(y)\exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)T\left\{ \exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\} \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)U(T,-T) \right\}\\
\end{aligned}$$
We show the case ##x_0>y_0##. By 4.26 we get
$$U(T,-T)=U\left(T, x_0\right) U\left(x_0, y_0\right) U\left(y_0,-T\right)$$
which we substitute.
$$A=T\left\{ \phi _I(x)\phi _I(y)U\left( T,x_0 \right) U\left( x_0,y_0 \right) U\left( y_0,-T \right) \right\} $$
Now we want to apply the time ordering. For this we note that the ##U\left(T, x_0\right)## contains only operators with the with in the interval ##\left[T, x_0\right]##, and similar for the terms ##U\left(x_0, y_0\right)## and##U\left(y_0,-T\right)##. Hence, if we apply the time ordering we get.
##A=U\left(T, x_0\right) \phi_I(x) U\left(x_0, y_0\right) \phi_I(y) U\left(y_0,-T\right)##, which occurs in the numerator of your second expression.
This step seems straightforward:
$$\begin{aligned}
A&=T\left\{ \phi _I(x)\phi _I(y)\exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)T\left\{ \exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\} \right\}\\
\end{aligned}$$
However this means:
$$\begin{aligned}
A&=T\left\{ \phi _I(x)\phi _I(y)\exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)\left[ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2H_I\left( t_1 \right) H_I\left( t_2 \right) +\cdots \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)T\left[ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2H_I\left( t_1 \right) H_I\left( t_2 \right) +\cdots \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)\left[ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2T\left\{ H_I\left( t_1 \right) H_I\left( t_2 \right) \right\} +\cdots \right] \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)T\left\{ \exp \left[ -i\int_{-T}^T{d}tH_I(t) \right] \right\} \right\}\\
&=T\left\{ \phi _I(x)\phi _I(y)U(T,-T) \right\}\\
\end{aligned}$$
In this process we use:
$$\begin{aligned}
&T\left\{ 1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2H_I\left( t_1 \right) H_I\left( t_2 \right) +\cdots \right\}\\
&=1+(-i)\int_{t_0}^t{d}t_1H_I\left( t_1 \right) +\frac{(-i)^2}{2!}\int_{t_0}^t{d}t_1dt_2T\left\{ H_I\left( t_1 \right) H_I\left( t_2 \right) \right\} +\cdots\\
\end{aligned}$$
which means :
$$
T\int_{t_0}^t{d}t_1\cdots dt_nH_I\left( t_1 \right) \cdots H_I\left( t_n \right) =\int_{t_0}^t{d}t_1\cdots dt_nT\left\{ H_I\left( t_1 \right) \cdots H_I\left( t_n \right) \right\} $$
What's more, in the derivation of (4.44):
1683568909241.png

In order to apply wick's theorm, Time-ordering must go inside the integral.
So my question is:
Does Time-ordering and Time Integral commute?
Or in another word:
Can Time-ordering can go inside the integral?
 
Last edited:
Physics news on Phys.org
  • #2
I have found a great answer:
Prahar (https://physics.stackexchange.com/users/8821/prahar), Time ordering of integral, URL (version: 2022-12-17): https://physics.stackexchange.com/q/741494
$$T\int_{t_0}^t{d}t_1\cdots dt_nH_I\left( t_1 \right) \cdots H_I\left( t_n \right)$$
is defined to equal to
$$\int_{t_0}^t{d}t_1\cdots dt_nT\left\{ H_I\left( t_1 \right) \cdots H_I\left( t_n \right) \right\}$$
Otherwise the left side does mean anything.
This definition can be extended to cases like##T\left\{ \phi \left( t\prime_1 \right) \cdots \phi \left( t\prime_m \right) \int_{t_0}^t{d}t_1\cdots dt_n\phi \left( t_1 \right) \cdots \phi \left( t_n \right) \right\} ##
$$\begin{aligned}
T\left\{ \phi \left( t\prime_1 \right) \cdots \phi \left( t\prime_m \right) \int_{t_0}^t{d}t_1\cdots dt_n\phi \left( t_1 \right) \cdots \phi \left( t_n \right) \right\} :&=T\left\{ \phi \left( t\prime_1 \right) \cdots \phi \left( t\prime_m \right) \int_{t_0}^t{d}t_1\cdots dt_nT\left\{ \phi \left( t_1 \right) \cdots \phi \left( t_n \right) \right\} \right\}\\
&=\int_{t_0}^t{d}t_1\cdots dt_nT\left\{ \phi \left( t\prime_1 \right) \cdots \phi \left( t\prime_m \right) \phi \left( t_1 \right) \cdots \phi \left( t_n \right) \right\}\\
\end{aligned}$$
 
  • Like
Likes vanhees71
  • #3
Yes, they commute and it can go inside the integral. Your first inequality should be the equality.
 
  • Like
Likes vanhees71
  • #4
I think it's a definition of the time-ordering symbol to apply it to the integrand, i.e., to commute it with the integral. It's defined to get a compact notation of the Dyson series of time-dependent perturbation theory in terms of a "time-ordered exponential". If you look at the derivation of this formula, that'll become clear. See, e.g., Sect. 1.9, where it's derived for potential scattering in non-relativistic QM:

https://itp.uni-frankfurt.de/~hees/publ/lect.pdf
 
  • Like
Likes George Wu

FAQ: Do Time-ordering and Time Integrals commute? Peskin(4.22)(4.31)(4.44)

What is the context of the question "Do Time-ordering and Time Integrals commute?" in Peskin's book?

In Peskin and Schroeder's "An Introduction to Quantum Field Theory," the question about the commutation of time-ordering and time integrals arises in the context of perturbation theory and the calculation of Feynman diagrams. Specifically, it pertains to the manipulation of integrals over time-ordered products of interaction Hamiltonians.

What does time-ordering mean in quantum field theory?

Time-ordering in quantum field theory refers to the arrangement of operators such that their order reflects the sequence of their corresponding times. The time-ordering operator T ensures that operators with later times appear to the left of those with earlier times, which is crucial for defining time-ordered correlation functions and perturbative expansions.

What are the specific equations (4.22), (4.31), and (4.44) in Peskin's book?

Equation (4.22) in Peskin and Schroeder introduces the time-ordered exponential, which is used to define the S-matrix in the interaction picture. Equation (4.31) gives the Dyson series expansion for the S-matrix, and equation (4.44) provides an expression for the time-ordered product of interaction Hamiltonians. These equations are fundamental in setting up the framework for perturbative calculations in quantum field theory.

Do time-ordering and time integrals commute in general?

In general, time-ordering and time integrals do not commute. This is because the process of time-ordering can change the limits and the structure of the integrals. When integrating time-ordered products, one must carefully account for the ordering of times within the integrals, which often leads to non-commutative behavior.

How is the non-commutativity of time-ordering and time integrals handled in practice?

In practice, the non-commutativity is handled by explicitly performing the time-ordering operation before integrating. This typically involves breaking the integrals into regions where the time-ordering is consistent and then summing over all possible permutations of the times. Techniques such as the Dyson series and the use of Feynman diagrams help to systematically account for this non-commutativity in perturbative calculations.

Back
Top