- #1
Limebat
- 17
- 4
- TL;DR Summary
- Does combusted gas travel faster in a vacuum tube?
Hey all,
So if a gas is combusted, would it travel faster through a vacuum tube or a regular ole' tube? I would assume the vacuum tube, as there are less particulates collisions in the way of the fast-moving gas molecules. Yet this also implies pressure on the outside of the thin barrier _ 2, indicating a large pressure resistance would be met when puncturing the last stretch of the tube. I am unsure because I haven't taken any gas dynamics / thermo classes yet. It would help a good bit if anyone can answer!
- Bonus question:
If an object is put at the beginning of the vacuum tube, then the gas is combusted, would the projectile travel faster? I would assume the same idea would happen - less molecules in the way / other reasons not to. However, the combusted gas is assumed to fill only the area behind the projectile, not in front. Meaning vacuum dynamics would probably only apply to the projectile and its forces propelling it. So this probably turns into a classical physics problem, where:
Is an accelerating projectile faster in vacuum rather than not in a vacuum?
So if a gas is combusted, would it travel faster through a vacuum tube or a regular ole' tube? I would assume the vacuum tube, as there are less particulates collisions in the way of the fast-moving gas molecules. Yet this also implies pressure on the outside of the thin barrier _ 2, indicating a large pressure resistance would be met when puncturing the last stretch of the tube. I am unsure because I haven't taken any gas dynamics / thermo classes yet. It would help a good bit if anyone can answer!
- Bonus question:
If an object is put at the beginning of the vacuum tube, then the gas is combusted, would the projectile travel faster? I would assume the same idea would happen - less molecules in the way / other reasons not to. However, the combusted gas is assumed to fill only the area behind the projectile, not in front. Meaning vacuum dynamics would probably only apply to the projectile and its forces propelling it. So this probably turns into a classical physics problem, where:
Is an accelerating projectile faster in vacuum rather than not in a vacuum?