- #211
PAllen
Science Advisor
- 9,212
- 2,438
Not quite. I'm saying if we really lived in a universe consistent with SR gravity, you would find:PeterDonis said:Hm. So you're saying an alternate version of Schild's argument could be formulated, which says that, since the "SR with gravity" theory predicts that geodesics of the Minkowski metric locally maximize proper time (even if they're not free-falling worldlines), if this theory were true, you could set up Schild's scenario locally, and derive a contradiction using local measurements--use the "maximal proper time" criterion to mark out the two opposite geodesic sides of the quadrilateral, and then observe that gravitational time dilation makes them have unequal lengths, which would not be possible in a flat spacetime.
1) There is no gravitational time dilation; there is 'pseudo-gravity time dilation' in an accelerating rocket. This would be a violation of the Einstein Equivalence Principle; only the WEP (Weak Equivalence Principle ) would hold in this universe.
2) Globally defined straight lines also maximize proper time.
As a result of verifying this, you could, in principle find geodesics locally by maximizing proper time. You could then locally set up an instance of Schild's quadrilateral near a planet that had no contradiction because gravitational time dilation cannot exist in such a universe (by Schild's argument).
In a rocket, you could try assuming you might be sitting on a planet and that the back and front traced out geodesics. You would then find that pseudo-gravity time dilation disproved your assumption and you would know you these are not geodesics.
Last edited: