- #71
Austin0
- 1,160
- 1
Originally Posted by TrickyDicky
In a free falling frame what internal experiments would produce different results over time?
How could they determine a time dependent metric?
it is easy to see that relative to flat space inertial observers or static Schwarzschild observers they would have a dynamic metric but I assume that is not what you are talking about.
In a stationary curved spacetime every inertial observer (that is a geodesic observer) can see himself at rest in a coordinate system with time-independent metric components.
As i am just trying to get a handle on Killing vectors so could you explain this in more fundamental terms.PeterDonis said:This is not correct. Inertial observers in a stationary curved spacetime (e.g., Schwarzschild spacetime) see a time-varying metric; the invariant way of expressing this is that inertial observers in a stationary curved spacetime do not follow orbits of the timelike Killing vector field. Observers who follow orbits of the timelike Killing vector field are not inertial; they experience a nonzero proper acceleration that varies with radius.
In a free falling frame what internal experiments would produce different results over time?
How could they determine a time dependent metric?
it is easy to see that relative to flat space inertial observers or static Schwarzschild observers they would have a dynamic metric but I assume that is not what you are talking about.