- #36
alan white
- 6
- 0
Interesting thread. I'm new here but I find the forum fascinating.
Last edited:
yuiop said:Is Schrodinger's cat paradox a poor pedagogical example for students of QM? In the traditional formulation of the paradox, the cat is declared to be both alive and dead at the same time, but no proof is offered of how the paradox can not be resolved by simply assuming the cat is either dead or alive but not both, before a human observer opens the box. This might give a new student to QM the (incorrect) impression that the non classical properties of quantum states is simply a non standard interpretation of results that can be perfectly explained by classical assumptions. Secondly, the cat paradox implies the whole radioactive source, detector, amplifier, poison capsule and cat system is in a superposition of states, until a human opens the box and makes an observation. This (in my opinion) is misleading, because the superposition breakdown probably occurs much earlier. For example the cat observing the poison capsule breaking is an observation (although brief) by a sentient being, but the Schrodinger cat paradox implies that a living creature such as a cat is not sufficiently sentient to qualify as an observer. Even this is misleading, because an observation does not have to be an observation by a sentient being and can simply be a measurement by a machine such as the detection and amplification of the decay particle by a Geiger counter. In my opinion, even observation or detection is not totally necessary for the superposition to collapse. For example some experiments seem to suggest that passing a photon through a special kind of prism that deflects the photon one way or another according to its polarisation, is sufficient to collapse the superposition because there is potential to make a measurement of the polarisation based on "which way" information, even if there is no detection equipment present. All in all, I get the impression that the Schrodinger's cat paradox does nothing other than potentially confuse newcomers to QM.
P.S. I am just a beginner in QM and these are just my initial impressions for discussion and corrections are welcome.
soothsayer said:For me, the most obvious problem with the thought experiment lies in the fact that the Geiger counter is perfectly sufficient in collapsing the wave function of the decay particle, and superposition ends there, does it not?
When you hear your door bell ring, you wonder who it is. Is ti the postman with the parcel you have been waiting for, or is it the pretty girl next door wanting a date, or is a mad axe man, or is it the council wanting to give you a notice to knock down your house to put a highway through, or is it some escaped convicts looking to take you hostage and hide out in your place, or is some passer by wanting to tell you your dog has has escaped and has been run over, or is it someone that turns out to be your mother even though you were not aware you were adopted? According to the interpretation that a lack of knowledge constitutes a state of superposition, the person at the door is a superposition of girl next door and mad axe man and whatever else you imagine until you open the door. Does anyone really believe that the person at the door does not have an objective reality independent of their imagination?Rap said:Not unless you read or hear the Geiger counter. Until then, it too is in a state of superposition (clicked/not clicked). And you don't read or hear the Geiger counter. The only measurement you make is to open the box, and then the state of the Geiger counter and cat and whatever else collapses. From that you can determine whether the Geiger counter has clicked or has not.
And all this assumes what? Well, if you accept the lesson Decoherence is telling us, basically at least two prerequisites:Rap said:Originally Posted by soothsayer View Post
"For me, the most obvious problem with the thought experiment lies in the fact that the Geiger counter is perfectly sufficient in collapsing the wave function of the decay particle, and superposition ends there, does it not?"
Not unless you read or hear the Geiger counter. Until then, it too is in a state of superposition (clicked/not clicked). And you don't read or hear the Geiger counter. The only measurement you make is to open the box, and then the state of the Geiger counter and cat and whatever else collapses. From that you can determine whether the Geiger counter has clicked or has not.
Given the whole SC scenario is imho 'Alice-in-Wonderland', I will use 'mind powers' and will into existence an obvious choice!yuiop said:When you hear your door bell ring, you wonder who it is. Is ti the postman with the parcel you have been waiting for, or is it the pretty girl next door wanting a date, or is a mad axe man, or is it the council wanting to give you a notice to knock down your house to put a highway through, or is it some escaped convicts looking to take you hostage and hide out in your place, or is some passer by wanting to tell you your dog has has escaped and has been run over, or is it someone that turns out to be your mother even though you were not aware you were adopted? According to the interpretation that a lack of knowledge constitutes a state of superposition, the person at the door is a superposition of girl next door and mad axe man and whatever else you imagine until you open the door. Does anyone really believe that the person at the door does not have an objective reality independent of their imagination?
Rap said:Not unless you read or hear the Geiger counter. Until then, it too is in a state of superposition (clicked/not clicked). And you don't read or hear the Geiger counter. The only measurement you make is to open the box, and then the state of the Geiger counter and cat and whatever else collapses. From that you can determine whether the Geiger counter has clicked or has not.
And thanks in turn for your response, Rap.Rap said:Thanks for the responses. I have a couple of options.
Guess the best I can hope is to be classified here is as type 2 - but hell I'm not worthy of self-classification!...Oh, hell, I'll go with type 2.
I do think so, but more below....Like Q-reeus implies, SCP is a very idealized system where the cat and everything else in the box implies a totally isolated system, not likely to happen, but is there some fundamental contradiction in assuming such a thing as a thought experiment? I don't think so...
Is that not what isolation is all about? In order to be truly isolated, such a chain is obligatory I would think. And, given the extreme QM delicacy of the actual system, that implies an essentially 'magical' process of separation at each instance (maybe one could 'practically' have the cat isolated from the box if both are weightless on an orbiting space-station, but hardly the original setup. And that still ignores coupling from thermal radiation, gravitational fluctuations etc.) In #6 I attempted to highlight repercussions when incorrectly assuming that 'opening box' and viewing defined observation - no, whether or not superposition has in fact occurred has repercussions effecting eg momentum 'imbalances' of the box (an isolation issue) which is quite distinct from 'viewing the cat' as per original scenario. If Decoherence is accepted, environmental coupling ensures superposition is not there - period. Hence 'jerks' will tell us whether the cat is for sure dead or alive. If no 'jerks', well Decoherence is 'dead', but I would bet otherwise!...To Q-reeus, the cat in the box is a way of saying that yes, the cat and the box and everything else is a perfectly isolated system. 1) I don't understand why you bring in the table, why the cat is isolated from the box, etc, etc. and have this infinite chain of succesively isolated systems...
Point there taken - but please note my response was overall not only to your remarks but also inclusive of Soothsayer you were responding to. Guess I should have delineated better.No, I am not saying that the collapse occurs at the Geiger counter click. I am saying that it occurs at the "instant" you open the box and see the cat dead or alive. Sure, its much more complicated, you can observe an infinite number of possibilities, cat alive, cat alive but barely, due to poison, cat dead for 1 second, cat dead for a year...
Nice to know which interpretation you prefer.To be very clear about it, I am a Copenhagen sympathizer but not a Copenhagen soldier.
No objection in principle accept that it ignores completely point 2 in #41: both cat and Wigner's friend are not coherent wavefunctions - unless not only perfectly isolated but also in 'ultra deep-freeze', in which case they cannot function as per thought experiment. Can you have it otherwise?There is a thought experiment called "Wigners friend" in which there is a cat etc. in a box observed by a scientist called Wigner's friend, who, along with the cat in the box, is enclosed in a larger box, and Wigner is outside of it. The friend opens the box, sees the result, but Wigner does not. Is the friend in a superposition of states? What does that feel like? Or did the wave function collapse when the friend opened the box? If so, why can't the wave function collapse before the friend opened the box? It is my opinion that Wigner uses one wave function to describe the situation, the friend uses another. The friend's wave function collapses when he/she opens the SC box, Wigner's wave function collapses when he opens his box and gets a report from his friend. Yes, that means that the wave function is not an absolute, objective entity. It is a particular type of encoding of the information availiable to the person using it, involving only quantum probabilities, not classical probabilities. Standard quantum mechanics assumes that all observers are equivalent, sharing common knowledge, and therefore agree on the wave function. SCP is a way of showing that the wave function is not a completely objective physical entity, but rather a tool in the scientists toolbox. Along with the theory and techniques of QM, calculations may be made on the wave function to predict the probability of outcomes of measurements for the particular scientist using them.
Obviously I have hit a raw nerve as you are resorting to thinly veiled personal attacks. I do not see any problem with assuming an idealised isolated system for the cat in a box. We could for example put the box in space and immobilise the cat so that it can not move while it is alive. What I object to is that you seem to think you can prove that the cat is in a superposition of states before the box is opened when there is nothing in the experiment that excludes the possibility that the cat is either dead or alive but not both. By strongly adhering to the claim that the cat is in a superposed state before the box is opened you are making a statement about the state of the cat about which have made no knowledge or measurement. I agree with Q-reeus that we need a new thought experiment or paradox to replace the SCP that clearly demonstrates the superposed state of the cat and eliminates any possibility of the cat being in a definite state that we just happen to have no knowledge of due to lack of information. I contend that if you are in a windowless soundproof building then you as an observer are isolated from the system outside the building and you have a equal lack of knowledge as the observer outside the cat box, the only difference being greater number of possibilities for what is outside the building than inside the cat box.Rap said:First of all, to yuiop, the Schroedinger cat paradox is not like wondering who is at the door. Like Q-reeus implies, SCP is a very idealized system where the cat and everything else in the box implies a totally isolated system, not likely to happen, but is there some fundamental contradiction in assuming such a thing as a thought experiment? I don't think so. Science has to do with isolated systems and repeatable measurements, so the doorbell ringing is not a scientific problem and certainly not a quantum problem.
From what I have seen, it takes very little to to decohere a quantum system. Merely placing 1/4 waveplates in front of two slits can prevent the interference pattern forming, even if the which way information is not analysed. The mere potential to be able to determine the which way path breaks down the interference pattern, so it seems to that a Geiger counter and and a mechanical device to break the poison capsule and living cat are more than enough to decohere the system long before the observer outside the box opens the box. All the observer outside the box has, is a lack of knowledge of what is going on inside the box. We have a reasonable idea of what happens if we do the experiment with the box open throughout, but when we close the box we have no idea what is going inside the box and pixies could be playing in there for all we know, but disappear the moment we open the box. No one can prove that pixies were not in the box while it was closed, but because it beyond our normal expectation, we would ask for proof that pixies are inside the box when it closed and we would ask for proof that the cat is in a superposed state of dead and alive when it closed.Rap said:... 2) No, I am not saying that the collapse occurs at the Geiger counter click. I am saying that it occurs at the "instant" you open the box and see the cat dead or alive.
Wigner's friend sealed inside his box, is not much different to my "who is at the door" example. Until he opens his box he has no idea what is happening outside his box. He imagines the cat is in a superposition of dead or alive, but he finds when he opens his box and looks out to find that Wigner has replaced the cat with a dead mongoose so Wigner's friend is wrong about what he thinks is outside his box, but this is not a QM phenomenon, but just a lack of knowledge on Wigner's friends behalf. I find your concept of multiple wave functions (one for every observer) for a given system, difficult to swallow when a system can be described by a single wave function. Why do jump to the conclusion of a wave function with no objective existence when there is an objective alternative?Rap said:There is a thought experiment called "Wigners friend" in which there is a cat etc. in a box observed by a scientist called Wigner's friend, who, along with the cat in the box, is enclosed in a larger box, and Wigner is outside of it. The friend opens the box, sees the result, but Wigner does not. Is the friend in a superposition of states? What does that feel like? Or did the wave function collapse when the friend opened the box? If so, why can't the wave function collapse before the friend opened the box? It is my opinion that Wigner uses one wave function to describe the situation, the friend uses another. The friend's wave function collapses when he/she opens the SC box, Wigner's wave function collapses when he opens his box and gets a report from his friend. Yes, that means that the wave function is not an absolute, objective entity.
John232 said:It would be like someone that works at a nuclear waste facility would be dying of cancer and not dying of cancer at the same time from being exposed to a leak at the same time until he gets checked out by a doctor by an EKG. It wouldn't be until he got diagnosed that he would actually be able to have it for certain. Would make you think twice before getting checked out for haveing cancer...
alan white said:Very true. And by the same token, quantum collapse occurs each time a new observer observes the same thing. This is a departure from a lot of people who believe that once collapsed, the works been done.
Renegade thinking, because it implies that the objective reality is not really objective, but only appears to be.
Q-reeus said:(maybe one could 'practically' have the cat isolated from the box if both are weightless on an orbiting space-station, but hardly the original setup. And that still ignores coupling from thermal radiation, gravitational fluctuations etc.)
Q-reeus said:In #6 I attempted to highlight repercussions when incorrectly assuming that 'opening box' and viewing defined observation - no, whether or not superposition has in fact occurred has repercussions effecting eg momentum 'imbalances' of the box (an isolation issue) which is quite distinct from 'viewing the cat' as per original scenario.
Q-reeus said:If Decoherence is accepted, environmental coupling ensures superposition is not there - period. Hence 'jerks' will tell us whether the cat is for sure dead or alive. If no 'jerks', well Decoherence is 'dead', but I would bet otherwise!
Q-reeus said:No objection in principle accept that it ignores completely point 2 in #41: both cat and Wigner's friend are not coherent wavefunctions - unless not only perfectly isolated but also in 'ultra deep-freeze', in which case they cannot function as per thought experiment.
yuiop said:What I object to is that you seem to think you can prove that the cat is in a superposition of states before the box is opened when there is nothing in the experiment that excludes the possibility that the cat is either dead or alive but not both.
yuiop said:By strongly adhering to the claim that the cat is in a superimposed state before the box is opened you are making a statement about the state of the cat about which have made no knowledge or measurement.
yuiop said:I contend that if you are in a windowless soundproof building then you as an observer are isolated from the system outside the building and you have a equal lack of knowledge as the observer outside the cat box, the only difference being greater number of possibilities for what is outside the building than inside the cat box.
yuiop said:so it seems to that a Geiger counter and and a mechanical device to break the poison capsule and living cat are more than enough to decohere the system long before the observer outside the box opens the box.
yuiop said:but when we close the box we have no idea what is going inside the box and pixies could be playing in there for all we know, but disappear the moment we open the box.
yuiop said:I find your concept of multiple wave functions (one for every observer) for a given system difficult to swallow when a system can be described by a single wave function. Why do jump to the conclusion of a wave function with no objective existence when everything can be described by a wave function with an objective existence?
We agree on the definition, good. But can cat-in-a-box ever be so, unless totally unrealistic assumptions are made? That's my point - pick a system for which the necessary degree of isolation (both external and 'internal') is realistically achievable, not ridiculously implausible. Nano-scale seems about right to me.Rap said:Isolation is when the box is isolated from any outside influence - gravitation, table, the outside scientist, etc.
Well, a cat that's alive will at minimum have a beating heart, giving off 'tremors' that in principle can be detected without opening the box and viewing, whereas when dead... So I guess theoretical total isolation answers that one - but 'in practice' it highlights that opening the box and viewing is not really needed. The catch-22 here is that if cat+detector is genuinely in superposition - no tremors should be present to detect (all 'cat states' being equally present), which in turn hinges on whether superposition is truly realizable and realized.Hmm - I don't understand that, so I won't respond.
And the key here surely is SS - 'simple system'. One for which a coherent wavefunction makes sense. Why do you imagine the experimentalists in that micro-cantilever (not mirror as I originally said) setup mentioned in #22 had to cool such a tiny object down to very near absolute zero? Isn't it because even such a simple entity is in effect an incoherent jumble of wavefunctions otherwise. How much more so a room-temperature cat, that basically is trillions of environments interacting and continually decohering with each other? My take on decoherence applied here - The cat is it's own very non-isolated environment!Decoherence does not ensure that superposition is not there. When a simple system (SS) interacts with a measuring device (MD), decoherence assures that the wave function for SS is no longer coherent, but the SS-MD wave function (assuming it is isolated) will still be coherent. Maybe I said that wrong, but what I mean is the SS-MD wave function will still be a purely QM wave function with a huge number of degrees of freedom, which may still be thought of as a superposition of all the dead ones and the live ones, in the case of SC. Only when the SS-MD system is observed does collapse occur.
My understanding, admittedly as very much a non-expert, is as per previous comment. But I will defer to your greater knowledge on these matters, if you can explain the above. OK - way past bed time for me!Yes, its perfectly isolated but why the requirement of absolute zero? If I can have a coherent wave function for one particle bouncing around, or two, or three, why not 10^23. In principle, I mean.
John232 said:I kind of ment it more as a joke. I don't think people would never die of cancer if they never got checked out for it, and never noticed any evidence of haveing it themselves. If you could it would be the cure for cancer since you could never have it from radiation if you just never got checked out.
I think there is a difference between the microscopic and macroscopic worlds. The matter we observer on a daily basis isn't in a state where they can exist in multiple states at the same time. I think if there was a reaction that leaked into the macroscopic world it would only happen and not happen relative to the original particle that was also in a state that it didn't decay. The cat may only be alive and dead at the same time relative to the original particle that was also existing in a state where it didn't decay.
Rap said:Not unless you read or hear the Geiger counter. Until then, it too is in a state of superposition (clicked/not clicked). And you don't read or hear the Geiger counter. The only measurement you make is to open the box, and then the state of the Geiger counter and cat and whatever else collapses. From that you can determine whether the Geiger counter has clicked or has not.
G01 said:No. A human observer does not have to be present for a measurement to take place.
G01 said:The Geiger counter is a classical system. That is the key. The measurement occurs when the quantum system interacts with a classical system. It is this interaction that causes the decoherence phenomenon which collapses the entire composite system, the cat+Geiger counter+ decaying atom into a classical, non superimposed state.
G01 said:No human intervention or reading of the Geiger counter is necessary to collapse the system.
G01 said:The human observers uncertainty about the measurement is classical, and does not correspond to a quantum superposition.
G01 said:No. A human observer does not have to be present for a measurement to take place.
The Geiger counter is a classical system. That is the key. The measurement occurs when the quantum system interacts with a classical system. It is this interaction that causes the decoherence phenomenon which collapses the entire composite system, the cat+Geiger counter+ decaying atom into a classical, non superimposed state.
No human intervention or reading of the Geiger counter is necessary to collapse the system.
The human observers uncertainty about the measurement is classical, and does not correspond to a quantum superposition.
Well firstly Rap I should say thanks for taking the time for a detailed and thoughtful response - something I'm not much accustomed to here at PF.Rap said:To Q-reeus:
I think we agree that the SC scenario is not practically realizable (at present). But a fundamental aspect is the use of the box as a way of saying the cat/radioactive material/prussic acid/Geiger counter system is totally isolated. That means nothing in, nothing out. The cat's beating heart cannot be detected by the scientist, nothing. Any lack of isolation denies the assumption that the scientist cannot in any way know what is going on inside the box. Isolation implies that since you know the wave function when the box is closed, you can, in principle, use Schroedinger's equation to calculate its evolution in time without any parameters other than those of the box itself...
I agree that it does not constitute a measurement to the scientist outside the closed box, but the interaction with the quantum particle with the Geiger particle does constitute a measurement. In the quantum erasure experiment here http://grad.physics.sunysb.edu/~amarch/Walborn.pdf and here http://grad.physics.sunysb.edu/~amarch/ the placement of two quarter wave plates in front of the dual slits is sufficient to destroy the interference pattern because as far as the quantum particles are concerned a measurement of polarity has been made. This is despite the fact that there is no device to detect the angular deflection of the polariser as the photon passes through and despite the fact there no second polariser before or after the slits to measure the circular polarisation to confirm which slit the photon went through. "Measurement" of which slit the photon went through does not even require the human observer to actually make the measurement. All that is necessary, is that devices are in the wave path that could potentially be analysed later, to constitute "a measurement" as far as the quantum system is concerned. This is what the experiments appear to be telling us. The measurements you are talking about are the best probabilistic guesses of human observers with insufficient information about the system.Rap said:If you wish to define "measurement" as a case where a macroscopic system becomes approximatable as a set of classical possibilities with classical probabilities, then fine. I think of measurement as the removal of the probability aspect. To say the cat might be dead and might not be dead and the probabilities are approximately classical does not constitute a measurement to the scientist who has not yet opened the box.
yuiop said:In the quantum erasure experiment here http://grad.physics.sunysb.edu/~amarch/Walborn.pdf and here http://grad.physics.sunysb.edu/~amarch/ the placement of two quarter wave plates in front of the dual slits is sufficient to destroy the interference pattern because as far as the quantum particles are concerned a measurement of polarity has been made. ...
DrChinese said:The quarter wave plates do NOT, in and of themselves, affect the interference pattern.
DrChinese said:Further, in a quantum measurement system, it is possible to erase the results of a measurement and thereby restore a prior superposition state.
DrChinese said:You are correct that the result of a measurement does not need to be recorded or otherwise observed to achieve decoherence. Again, it depends on the complete setup.
Rap said:This bothers me, because I thought that decoherence was irreversible. I assume this means that if you are on the ragged edge of decoherence, it is possible for a system to "re-cohere"?
Could you elaborate on this statement? For example in fig 2 of http://grad.physics.sunysb.edu/~amarch/Walborn.pdf when the quarter wave plates are not present there is an interfence pattern that looks like this:DrChinese said:The quarter wave plates do NOT, in and of themselves, affect the interference pattern. Further, in a quantum measurement system, it is possible to erase the results of a measurement and thereby restore a prior superposition state.
Q-reeus said:Tentatively accepting that, there's one aspect that still doesn't quite match up in my mind. Taking the position that pre measurement everything in the box is in a superposed 'ghostly' state, center-of-mass change post measurement seems problematic. Specifically, that say the averaged state of 'alive and standing cat' + 'dead and lying cat' is different from either actualized/measured state. So is there a sudden jump in momentum as a result of the act of measurement, or is that somehow formally taken care of 'observer+observed' = constant?
Hmm... no problem with following that sequence, but it's the dynamics at the point of wavefunction collapse/measurement that has me still wondering. Collapse is supposed to be essentially instantaneous, I gather this means also the transition in cat centre-of-mass - from superposed to either standing & alive, or lying & dead. Whether or not the box is taken to act as an exact counterpoise momentum wise, seems kind of potentially violent - we all know what a really rapid dp/dt implies. I don't for a moment believe such could happen, but it does suggest maybe collapse has to be in fact a somewhat leisurely affair? Interesting to speculate about possible additional restrictions on the wavefunction/collapse process if we were to say have a rotating cat-n-box setup (conservation of angular momentum). Bed time again!Rap said:Well, the momentum of the whole system would not change, but the position of the box would change if the cat died and fell down... Until then the position of the box is in a superposition of moved and not-moved.
Q-reeus said:Hmm... no problem with following that sequence, but it's the dynamics at the point of wavefunction collapse/measurement that has me still wondering. Collapse is supposed to be essentially instantaneous, I gather this means also the transition in cat centre-of-mass - from superposed to either standing & alive, or lying & dead. Whether or not the box is taken to act as an exact counterpoise momentum wise, seems kind of potentially violent - we all know what a really rapid dp/dt implies. I don't for a moment believe such could happen, but it does suggest maybe collapse has to be in fact a somewhat leisurely affair? Interesting to speculate about possible additional restrictions on the wavefunction/collapse process if we were to say have a rotating cat-n-box setup (conservation of angular momentum). Bed time again!
soothsayer said:Thank you, yes, exactly the point I was trying to make a while back. I think paradoxes arise if you posit that human observation must happen for a measurement to take place
soothsayer said:At the same time, in the double slit experiment, human observation alone is not enough to collapse the wavefunction, precise measurement must take place so as to induce momentum uncertainty.
soothsayer said:And also, if we assert that the Geiger counter is in a state of superposition until heard or viewed by a human, we would have to explain why the cat, upon hearing the Geiger counter and viewing the hammer fall and glass shatter (or not) would not be able to collapse the system, while a human could, as though only an intelligent enough being could collapse a wavefunction...
Q-reeus said:... the time evolving wavefunction of the totally isolated system cat+Geiger-counter+poison+box etc. is basically just a 'knowledge probability function' tied entirely to the radioactive decay process within, and quite distinct from the 'actual physics' going on in said system (ie. - cat at any moment is alive, or is dead/dying, we just don't know).
Q-reeus said:In #64 you wrote "...Until then the position of the box is in a superposition of moved and not-moved." I will in light of your subsequent statements take that as just a semantic slip-up - that you really meant "knowledge of the position...". Yes? Otherwise, the bang-crash problem posed in #65 remains imho acute and real
Q-reeus said:If so then quite honestly I cannot see any practical difference to an entirely classical system...
Q-reeus said:My understanding from various sources has been quite different - superposition means an actual indeterminacy of the physical system - it is, really and truly, in all possible states at once, but the weighting of the 'blurred system' evolves smoothly and deterministically in time - more and more favoring 'dead cat' as time goes on. And that observation suddenly crystallizes the actual physical state. Not merely revealing what already is, but forcing into existence at that point - hence the concerns in #65.
Q-reeus said:Given that the Schrodinger eq'n evolves in a Hamiltonian manner, that should guarantee all superposed states are equivalent re energy & momentum? Severely restricting the cat states - cannot be standing/lying at the same time - maybe 'floating' at all times. Then there is no bang crash crisis upon wavefunction collapse, right? On further thought, that still doesn't restrict changes in center of mass - looks like back to square one.
Q-reeus said:Seems to be the lesson from say double-slit; observed or not effects the interference pattern in a very physical way. It's not just an alteration of our which-way knowledge, the pattern of screen hits alters tangibly - energy/momentum density has altered for real. So is there even one clear Copenhagen interpretation of SCP? From: http://en.wikipedia.org/wiki/Schrodinger's_cat, under Copenhagen Interpretation: (quote)
Q-reeus said:However, one of the main scientists associated with the Copenhagen interpretation, Niels Bohr, never had in mind the observer-induced collapse of the wave function, so that Schrodinger's Cat did not pose any riddle to him. The cat would be either dead or alive long before the box is opened by a conscious observer.[5]
Q-reeus said:Analysis of an actual experiment found that measurement alone (for example by a Geiger counter) is sufficient to collapse a quantum wave function before there is any conscious observation of the measurement.[6] The view that the "observation" is taken when a particle from the nucleus hits the detector can be developed into objective collapse theories.
Q-reeus said:In contrast, the many worlds approach denies that collapse ever occurs."
Hey Rap, sorry if you feel that way, but honestly not my intent - just a genuinely confused QM dummy. Really appreciate all the effort you go to.Rap said:See, you and everybody else who attack my position...
Fine, I'm thinking that is basically Schrodinger's Instrumentalist approach someone mentioned earlier. Have to say though that the following impresses me still re 'actual physics' - refers to that micro-cantilever experiment mentioned in #22:As a Copenhagen sympathizer, I would say that there is no "actual physics" going on in said system, just like there is no "actual spin" of an electron, just what you measure given the measurement device you set up, which may measure along z axis, or maybe x or y. "actual physics" would be an appeal to a hidden variable approach to QM, which has been shown to be false...
I worded that badly. Basically was suggesting that cat center of mass could be anywhere within the box, without in any way violating the constancy of energy/momentum, and the total system COM.Energy, momentum, center of mass will all remain constant...