- #141
- 8,943
- 2,949
zonde said:I'm not sure I understand.
Do not assume there is any decoherence. The state that you would use for predicting outcome of interference measurement between ##|d\rangle |D\rangle## and ##|u\rangle |U\rangle## then should be ##\alpha |u\rangle |U\rangle + \beta |d\rangle |D\rangle##. Exactly the same as in the second case because they are the same case. And your Born probabilities remain hidden variables that you can't observe because you performed interference measurement.
I don't know what you mean by "remain hidden".
If you use the postulate that a measurement always results in an eigenvalue of the thing that is measured, then there would be no interference between the two alternatives. If you use Schrodinger's equation to compute the probabilities, then there would be interference. So the two axioms are contradictory. They predict different probabilities for winding up in the state ##|final\rangle##.
[edit]This assumes that measurement is a physical process by which a microscopic variable is amplified to make a macroscopic difference in the measuring device. If you define measurement to mean "a conscious observer becomes aware of the result" then nothing that devices do can be considered a measurement.