MHB Does the Norm of a Linear Integral Operator Equal Its Spectral Radius?

sarrah1
Messages
55
Reaction score
0
Hello

A simple question.
I have a linear integral operator (self-adjoint)

$$(Kx)(t)=\int_{a}^{b} \, k(t,s)\,x(s)\,ds$$

where $k$ is the kernel. Can I say that its norm (I believe in $L^2$) equals the spectral radius of $K?$

Thanks!
Sarah
 
Physics news on Phys.org
No, the norm of an integral operator is not necessarily equal to its spectral radius. The norm of an integral operator is given by the supremum of its operator norm, which is defined as $\sup_{x\neq 0}\frac{||Kx||}{||x||}$. The spectral radius on the other hand is the largest eigenvalue of the operator.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top