MHB Does the Series Converge Absolutely, Conditionally, or Diverge?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Series
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{10.6.44}\\$
$\textsf{Does $S_n$ Determine whether the series converges absolutely, conditionally or diverges.?}\\$
\begin{align*}\displaystyle
S_n&= \sum_{n=1}^{\infty}
\frac{(-1)^n}{\sqrt{n}+\sqrt{n+6}}\\
\end{align*}
$\textit {apparently the ratio and root tests fail}$
 
Physics news on Phys.org
karush said:
$\tiny{10.6.44}\\$
$\textsf{Does $S_n$ Determine whether the series converges absolutely, conditionally or diverges.?}\\$
\begin{align*}\displaystyle
S_n&= \sum_{n=1}^{\infty}
\frac{(-1)^n}{\sqrt{n}+\sqrt{n+6}}\\
\end{align*}
$\textit {apparently the ratio and root tests fail}$

Well to determine absolute convergence, we need to first look at the absolute value series:

$\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{ \frac{1}{\sqrt{n} + \sqrt{n + 6}} } \end{align*}$

Since $\displaystyle \begin{align*} \sqrt{n} < \sqrt{n + 6} \end{align*}$ that means $\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{ \frac{1}{\sqrt{n} + \sqrt{n + 6}} } > \sum_{n = 1}^{\infty}{ \frac{1}{\sqrt{n+ 6} + \sqrt{n + 6}} } \end{align*}$, now notice that

$\displaystyle \begin{align*} \sum_{n = 1}^{\infty}{\frac{1}{\sqrt{n+6} + \sqrt{n+6}} } &= \sum_{n = 1}^{\infty}{ \frac{1}{2\,\sqrt{n+6}} } \\ &= \frac{1}{2}\,\sum_{n = 1}^{\infty}{ \frac{1}{\sqrt{n+6}} } \\ &= \frac{1}{2}\,\sum_{n = 1}^{\infty}{ \frac{1}{\left( n + 6 \right) ^{\frac{1}{2}}} } \end{align*}$

and this is a divergent p-series, so the absolute value series diverges by comparison.

Thus our original series is NOT absolutely convergent.

As for testing conditional convergence, it's an alternating series, so try the alternating series test.
 
so that is what that means!
 
Last edited:
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...

Similar threads

Replies
4
Views
2K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
17
Views
5K
Replies
3
Views
3K
Back
Top