MHB Dominika's question at Yahoo Answers Regarding Convex Functions

  • Thread starter Thread starter Chris L T521
  • Start date Start date
  • Tags Tags
    Convex Functions
AI Thread Summary
A function \( f \) is convex on the interval \( (a,b) \) if and only if its graph lies above or on the tangent line at any point \( (c, f(c)) \) within that interval. The proof begins by assuming \( f \) is convex and demonstrating that it satisfies the inequality \( f(x) \geq f(c) + f'(c)(x-c) \) for all \( x, c \in (a,b) \). Conversely, if \( f \) lies above all tangent lines, the proof shows that this leads to the definition of convexity. The discussion emphasizes the equivalence of the geometric interpretation of convexity with the mathematical condition involving derivatives. Understanding this relationship is crucial for analyzing the properties of differentiable functions.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Here is the question:

Dominika said:
Let $f$ be differentiable on the interval $(a,b)$. Show that $f$ is convex on $(a,b)$ if and only if, for every $c$ from $(a,b)$ its graph is placed above or on the tangent passing through a point $(c,f(c))$
Thanks a lot..

Here is a link to the question:

Convex function ...? - Yahoo Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hi Dominika,

The statement we want to prove is the following:

Suppose that $f$ is differentiable on it's domain $(a,b)$. Then $f$ is convex if and only if $(a,b)$ is convex and $f(x)\geq f(c)+f^{\prime}(c)(x-c)$ for all $x,c\in (a,b)$.

We're going to assume (without proof) the fact that an interval is convex (i.e. for any $x,y\in (a,b)$, we have $ty+(1-t)x\in (a,b)$ for any $0\leq t\leq 1$).

We proceed with the proof as follows.

Proof: Suppose $f$ is convex on $(a,b)$. Then for any $t\in[0,1]$ and $x,c\in(a,b)$, $tx + (1-t)c = c + t(x-c) \in (a,b)$. Furthermore, by definition of convexity of $f$, we have that
\[f(tx+(1-t)c) = f(c+t(x-c)) \leq tf(x) + (1-t)f(c).\]
Dividing both sides by $t$ and then solving the inequality for $f(x)$ gives us
\[f(x) \geq f(c) + \frac{f(c+t(x-c))-f(c)}{t}\]
Taking the limit as $t\to 0$ gives us
\[f(x)\geq f(c) + f^{\prime}(c)(x-c),\tag{1}\]
which is the desired result ($f(x)\geq\text{tangent line}$).

Conversely, suppose that $f$ lies above any tangent line over the interval $(a,b)$. Choose $x,c\in(a,b)$ such that $x\neq c$. Now, for any $t\in [0,1]$, define $z=tx + (1-t)c= c+t(x-c)$. We can see from here that $\color{red}{x-z}= \color{red}{(1-t)(x-c)}$ and $\color{blue}{c-z}=\color{blue}{-t(x-c)}$. Applying $(1)$ twice gives us
\[f(x)\geq f(z) + f^{\prime}(z)(x-z)\tag{2}\]
and
\[f(c)\geq f(z)+f^{\prime}(z)(c-z).\tag{3}\]
If we now multiply $(2)$ by $t$ and $(3)$ by $(1-t)$ and add them together, we see that
\[\begin{aligned} tf(x)+(1-t)f(c) &\geq tf(z)+(1-t)f(z) + tf^{\prime}(z)(\color{red}{x-z}) + (1-t)f^{\prime}(z)(\color{blue}{c-z})\\ &= f(z) + tf^{\prime}(z)\color{red}{(1-t)(x-c)} + (1-t)f^{\prime}(z)(\color{blue}{-t(x-c)})\\ &= f(z),\end{aligned}\]
which is the condition of convexity. Therefore, $f$ is convex.$\hspace{.25in}\blacksquare$

I hope this makes sense! (Smile)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top