Double Check My Work: Simplifying a Homework Statement

zzmanzz
Messages
47
Reaction score
0

Homework Statement



I got the problem down to:

\frac{2}{\pi} \left[ \int_{0}^{\pi/2} \frac{2}{\pi}xsin(nx) dx + \int_{\frac{\pi}{2}}^{\pi} (\frac{-2}{\pi}x+2)sin(nx) dx \right]

\frac{4}{\pi^2} \left[ \int_{0}^{\pi/2} xsin(nx) dx + \int_{pi/2}^{\pi} -xsin(nx) dx + \int_{pi/2}^{\pi} \pi sin(nx) dx<br /> \right]

\frac{4}{\pi^2} \left[ \left[ \frac{-x}{2n} cos(nx) +\frac{1}{n^2}sin(nx) \right]_{0}^{pi/2} + \left[ \frac{1}{n}xcos(nx)-\frac{1}{n^2}sin(nx) \right]_{\pi/2}^{\pi} + \left[\frac{-\pi}{n}cos(nx) \right]_{\pi/2}^{\pi} \right]

\frac{4}{\pi^2} \left[\left[\left[\frac{-\pi}{2n}cos(n\frac{\pi}{2}) +\frac{1}{n^2}sin(n\frac{\pi}{2}) \right] -\left[0\right]\right] + \left[ \left[\frac{\pi}{n}cos(n\pi)) - \frac{1}{n^2}sin(n\pi) \right] - \left[\frac{\pi}{2n}cos(n\frac{\pi}{2}) +\frac{1}{n^2}sin(n\frac{\pi}{2}) \right] \right] +<br /> \left[\frac{-\pi}{n}cos(n\frac{\pi}{2})+\frac{\pi}{n}cos(n\pi) \right]<br /> \right]

\frac{4}{\pi^2} \left[-\frac{\pi}{2n}cos(n\frac{\pi}{2}) +\frac{1}{n^2}sin(n\frac{\pi}{2}) + \frac{\pi}{n}cos(n\pi)) - \frac{1}{n^2}sin(n\pi) - \frac{\pi}{2n}cos(n\frac{\pi}{2}) -\frac{1}{n^2}sin(n\frac{\pi}{2}) -<br /> \frac{\pi}{n}cos(n\frac{\pi}{2})+\frac{\pi}{n}cos(n\pi)<br /> \right]<br /> <br />

\frac{4}{\pi^2} \left[-\frac{\pi}{4n}cos(n\frac{\pi}{2}) + \frac{\pi}{n}cos(n\pi)) - \frac{1}{n^2}sin(n\pi) -<br /> \frac{\pi}{n}cos(n\frac{\pi}{2})+\frac{\pi}{n}cos(n\pi)<br /> \right]<br /> <br />

I feel like i sccrewed something up to this point ... maybe turning some positive terms negative or vice versa? can someone just double check my work upto this point pleaseee.

Many thanks.
 
Physics news on Phys.org
zzmanzz said:

Homework Statement



I got the problem down to:

\frac{2}{\pi} \left[ \int_{0}^{\pi/2} \frac{2}{\pi}xsin(nx) dx + \int_{\frac{\pi}{2}}^{\pi} (\frac{-2}{\pi}x+2)sin(nx) dx \right]

\frac{4}{\pi^2} \left[ \int_{0}^{\pi/2} xsin(nx) dx + \int_{pi/2}^{\pi} -xsin(nx) dx + \int_{pi/2}^{\pi} \pi sin(nx) dx<br /> \right]

\frac{4}{\pi^2} \left[ \left[ \frac{-x}{2n} cos(nx) +\frac{1}{n^2}sin(nx) \right]_{0}^{pi/2} + \left[ \frac{1}{n}xcos(nx)-\frac{1}{n^2}sin(nx) \right]_{\pi/2}^{\pi} + \left[\frac{-\pi}{n}cos(nx) \right]_{\pi/2}^{\pi} \right]

\frac{4}{\pi^2} \left[\left[\left[\frac{-\pi}{2n}cos(n\frac{\pi}{2}) +\frac{1}{n^2}sin(n\frac{\pi}{2}) \right] -\left[0\right]\right] + \left[ \left[\frac{\pi}{n}cos(n\pi)) - \frac{1}{n^2}sin(n\pi) \right] - \left[\frac{\pi}{2n}cos(n\frac{\pi}{2}) +\frac{1}{n^2}sin(n\frac{\pi}{2}) \right] \right] +<br /> \left[\frac{-\pi}{n}cos(n\frac{\pi}{2})+\frac{\pi}{n}cos(n\pi) \right]<br /> \right]

\frac{4}{\pi^2} \left[-\frac{\pi}{2n}cos(n\frac{\pi}{2}) +\frac{1}{n^2}sin(n\frac{\pi}{2}) + \frac{\pi}{n}cos(n\pi)) - \frac{1}{n^2}sin(n\pi) - \frac{\pi}{2n}cos(n\frac{\pi}{2}) -\frac{1}{n^2}sin(n\frac{\pi}{2}) -<br /> \frac{\pi}{n}cos(n\frac{\pi}{2})+\frac{\pi}{n}cos(n\pi)<br /> \right]<br /> <br />

\frac{4}{\pi^2} \left[-\frac{\pi}{4n}cos(n\frac{\pi}{2}) + \frac{\pi}{n}cos(n\pi)) - \frac{1}{n^2}sin(n\pi) -<br /> \frac{\pi}{n}cos(n\frac{\pi}{2})+\frac{\pi}{n}cos(n\pi)<br /> \right]<br /> <br />

I feel like i sccrewed something up to this point ... maybe turning some positive terms negative or vice versa? can someone just double check my work upto this point pleaseee.

Many thanks.

Don't you remember the values for ##\sin(n \pi)## and ##\cos(n \pi)## for integer ##n##? What about the values of ##\cos(n \pi/2)## for even ##n## and for odd ##n##?

Also, when using LaTeX/TeX, use "\sin' and "\cos' instead of 'sin' and 'cos', because that will look much better and be much, much easier to read: you will get ##\sin x, \: \cos x## instead of ##sin x, \; cos x##.
 
Just a quick look-over=in your integration by parts, first term, 3rd line, I don't get a "2" in the denominator.
 
Charles Link said:
Just a quick look-over=in your integration by parts, first term, 3rd line, I don't get a "2" in the denominator.
you are right. thank you.. i was copying from my notes and might have caried that from the next step. good catch
 
Ray Vickson said:
Don't you remember the values for ##\sin(n \pi)## and ##\cos(n \pi)## for integer ##n##? What about the values of ##\cos(n \pi/2)## for even ##n## and for odd ##n##?

Also, when using LaTeX/TeX, use "\sin' and "\cos' instead of 'sin' and 'cos', because that will look much better and be much, much easier to read: you will get ##\sin x, \: \cos x## instead of ##sin x, \; cos x##.
Thanks for the reply.

So, looking back:\cos(n\pi) = (-1)^n

\sin(n\pi) = 0

\sin(\frac{n2}{\pi}) = (-1)^{((n-1)/2)} for n odd, 0 for even the sin cancels out though and doesn't matter?

\cos(\frac{2n}{\pi}) = \frac{(1+(-1)^n)}{2*(-1)^{n/2}}
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top