I Double Check Normalization Condition

thatboi
Messages
130
Reaction score
20
Consider the state ##\ket{\Psi} = \sum_{1 \leq n_{1} \leq n_{2} \leq N} a(n_{1},n_{2})\ket{n_{1},n_{2}}## and suppose $$|a(n_{1},n_{2})| \propto \cosh[(x-1/2)N\ln N]$$ where ##0<x=(n_{1}-n_{2})/N<1##. The claim is that all ##a(n_{1},n_{2})## with ##n_{2}-n_{1} > 1## go to ##0## as ##N\rightarrow\infty##. Clearly we need some kind of normalization constant, otherwise the cosh function should just blow up. So is the right normalization condition then $$C^{2}\frac{1}{4}\sum_{n_{1},n_{2}}^{N} |a(n_{1},n_{2})|^2 = 1$$ where ##C## is our normalization constant (I introduced the ##1/4## because I removed the ordering in the sum)? Because I tried doing the calculation and making the plot but I still cannot see this exponential decay.
 
Physics news on Phys.org
Ok I took another crack at the problem and this is indeed the correct normalization condition.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

Back
Top