- #71
BillKet
- 313
- 29
Thank you for your reply. I will look at the sections you suggested for questions 1. For the second one, I agree that if that ##R_\alpha## is a constant, we can take the electronic integral out of the vibrational integral, but I am not totally sure why can we do this. If we are in the BO approximation, the electronic wavefunction should be a function of ##R##, for ##R## not constant, and that electronic integral would be a function of ##R##, too. But why would we assume it is constant? I understand the idea behind BO approximation, that the electrons follow the nuclear motion almost instantaneously, but I don't get it here. It is as if the nuclei oscillate so fast that the electrons don't have time to catch up and they just the see the average inter-nuclear distance, which is kinda the opposite of BO approximation. Could you help me a bit understand this assumption that the electronic integral is constant? Thank you!amoforum said:I think I can answer the second question for now. Eqn. 6.333 I believe has some sloppy notation. The second integral should maybe have a different symbol for ##R_\alpha## for the electronic part. It's meant to be at a single internuclear distance, usually the equilibrium distance. So you don't integrate over it. Some other texts might call this the "crude" BO approximation, and Eqn. 6.330 would be the usual BO approximation. Then there's also the Condon approximation which assumes there's no dependence on the nuclear coordinates at all.