- #1
courtrigrad
- 1,236
- 2
How do you evaluate [tex] \frac{1}{x\ln x} [/tex] by integration by parts. I tried doing this doing the following:
[tex] u = \frac{1}{\ln x}, du = \frac{-1}{x(\ln x)^{2}}, dv = \frac{1}{x}, v = \ln x [/tex]. So I get:
[tex] \int udv = uv-\int vdu = 1 + \int \frac{1}{x\ln x} = \int \frac{1}{x\ln x} [/tex]. I know the answer is [tex] \ln(\ln x) [/tex]
Thanks
[tex] u = \frac{1}{\ln x}, du = \frac{-1}{x(\ln x)^{2}}, dv = \frac{1}{x}, v = \ln x [/tex]. So I get:
[tex] \int udv = uv-\int vdu = 1 + \int \frac{1}{x\ln x} = \int \frac{1}{x\ln x} [/tex]. I know the answer is [tex] \ln(\ln x) [/tex]
Thanks
Last edited: