- #1
yuiop
- 3,962
- 20
This is new thread on an issue that was that getting slightly off topic in the original thread.
Let's consider a slight variation of the Ehrenfest experiment. The fairly rigid carriages are all linked together by elastic couplings and are on a suitably highly banked track. As the velocity of the train increases, the elastic couplings get progressively more stretched putting a measurable strain on the carriages. At high enough velocity, the strain on the couplings get so high that they all snap. Once the couplings have snapped the stretching strain on the carriages vanishes and we end up with essentially the rod thought experiment I first proposed with no longitudinal strain parallel to the track, but there will of course be transverse strain as the carriages/ rods will of course be compressed down on to the track by the reaction force to the centripetal force exerted by the track. The transverse strain is not an issue here because I am only considering longitudinal length contraction.
The Thomas rotation is also not an issue here, because the orientation of the carriages/ rods is maintained by the banked track.
The key issue here is, can you in principle fit more carriages on the track when they are moving at relativistic velocities, than the number of carriages that will fit on the same track when they are at rest wrt the track?
yuiop said:What if we had some sort of accelerator device in a lab of radius r meters, and some rods with rest lengths of Pi meters each and what if we could comfortably fit more than 2*r rods around the perimeter if they were moving at high enough velocity
starthaus said:Once you start accelerating the rods around the perimeter they expand since they are not Born rigid, so you could not fit in more than 2*r rods. This is not a valid thought experiment for demonstrating length contraction. The above is a variant of the Ehrenfest paradox and the resolution is the same.
yuiop said:This is just nonsense. The rods do not expand because they are not linked to each other. In the Ehrenfest paradox the train carriages are more rigid than the elastic links between the carriages and so the links have to expand to take up the extra space between the carriages at higher velocities. In the rod thought experiment, it is the gaps between the rods that expands as the rods contract and so you can fit additional rods in the gaps. I don't think Born rigidity is even relevant here. Born rigidity is a method of acceleration, rather than a property of a material. It does not matter how the rods are accelerated as long as they get to a final velocity and are allowed to stabilize to their length contracted length. It is only when we are considering methods of spinning up solid discs to relativistic speeds that applying Born rigid acceleration becomes a problem. For rods that are not connected to each other, it is not a problem.
If you wanted to make the Ehrenfest paradox a bit more like the rod thought experiment, you could remove one link so that the train is not connected all the way around, but occupies all the track and is is just touching at the point where the link has been removed. When the train gets to high enough velocity it will have length contracted sufficiently that you could (in principle but with considerable technical difficulty) slip another (high speed) carriage onto the track into the expanded gap.
Passionflower said:I think this topic is not the place to discuss the Erhenfest paradox, but one comment: how can a rod remain Born rigid if it rotates? I thought only rods that accelerate in one direction can remain Born rigid? It seems to me that because the rod is spatially separated there will be some form of Thomas precession which will make Born rigidity impossible.
Am I wrong?
DaleSpam said:You are correct. Linear acceleration can be done without material strain (Born rigid), but there is no way to have angular acceleration without mechanical strain. Something must stretch.
Let's consider a slight variation of the Ehrenfest experiment. The fairly rigid carriages are all linked together by elastic couplings and are on a suitably highly banked track. As the velocity of the train increases, the elastic couplings get progressively more stretched putting a measurable strain on the carriages. At high enough velocity, the strain on the couplings get so high that they all snap. Once the couplings have snapped the stretching strain on the carriages vanishes and we end up with essentially the rod thought experiment I first proposed with no longitudinal strain parallel to the track, but there will of course be transverse strain as the carriages/ rods will of course be compressed down on to the track by the reaction force to the centripetal force exerted by the track. The transverse strain is not an issue here because I am only considering longitudinal length contraction.
The Thomas rotation is also not an issue here, because the orientation of the carriages/ rods is maintained by the banked track.
The key issue here is, can you in principle fit more carriages on the track when they are moving at relativistic velocities, than the number of carriages that will fit on the same track when they are at rest wrt the track?