Elastic and inelastic collisions

AI Thread Summary
In elastic collisions, both momentum and kinetic energy are conserved, which is evident when a low-energy particle collides with a stationary particle, resulting in a 90-degree angle between their paths. However, in high-energy proton collisions, the angle deviates due to relativistic effects, as the moving proton's mass increases near the speed of light. The distinction between elastic and inelastic collisions lies in whether the colliding particles remain unchanged; for instance, proton-proton collisions are elastic, while collisions involving electrons can produce different particles, indicating inelasticity. The equation ½ mu² = ½ mv² + ½ ms² applies to elastic collisions, but the ms term can be confusing as it relates to the kinetic energy of the system. Understanding these principles clarifies the nature of particle interactions in physics.
mystreet123
Messages
15
Reaction score
0

Homework Statement


A low-energy particle collides elastically with a stationary particle of the same mass. The angle between the subsequent paths of both particles are 90 degrees.
But when a high-energy proton collides with a stationary proton, the angle between the two paths is not 90 degrees. Why is it so?

Homework Equations


½ mu2 = ½ mv2 + ½ ms2

The Attempt at a Solution


I answered that it's because the collision was not elastic so the above equation couldn't apply. But the answer is that because the proton is moving near speed of light so it's mass is greater than rest mass. So is this collision between the two protons still an elastic one? How to know whether a collision is an elastic or an inelastic one by its nature? I saw on some websites they say subatomic collisions are elastic but from another past paper it says the scattering between electrons and hydrogen nuclei is an inelastic collision...
 
Physics news on Phys.org
mystreet123 said:

Homework Statement


A low-energy particle collides elastically with a stationary particle of the same mass. The angle between the subsequent paths of both particles are 90 degrees.
But when a high-energy proton collides with a stationary proton, the angle between the two paths is not 90 degrees. Why is it so?

Homework Equations


½ mu2 = ½ mv2 + ½ ms2

The Attempt at a Solution


I answered that it's because the collision was not elastic so the above equation couldn't apply. But the answer is that because the proton is moving near speed of light so it's mass is greater than rest mass. So is this collision between the two protons still an elastic one? How to know whether a collision is an elastic or an inelastic one by its nature? I saw on some websites they say subatomic collisions are elastic but from another past paper it says the scattering between electrons and hydrogen nuclei is an inelastic collision...
The collision is elastic if the colliding parties remain the same. If two protons collide, both of them remain the same protons. If an electron collides with a proton, you can get a neutron and a neutrino , for example; or you can get a hydrogen atom - these are inelastic collisions.
 
  • Like
Likes mystreet123
ehild said:
The collision is elastic if the colliding parties remain the same. If two protons collide, both of them remain the same protons. If an electron collides with a proton, you can get a neutron and a neutrino , for example; or you can get a hydrogen atom - these are inelastic collisions.
Thank you so much!
 
I never understood why the equation was ½ mu2 = ½ mv2 + ½ ms2 in the first place. I understand the mu and mv portion, but I don't quite understand the ms part of the equation. What is it derived from?
 
Disputationem said:
I never understood why the equation was ½ mu2 = ½ mv2 + ½ ms2 in the first place. I understand the mu and mv portion, but I don't quite understand the ms part of the equation. What is it derived from?
Note that you are responding to a five year old thread to ask a peripherally related question.

My response moved to https://www.physicsforums.com/threa...sions-between-particles.1006366/#post-6531530
 
Last edited:
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top