Elastic collision formulas -- Derivation blunder

The post should be a bit clearer and more organized.In summary, the conversation discusses the replacement and elimination of a variable, y, in a series of equations involving elastic collisions. The conversation also mentions the use of the trionym equation and the solution provided by Wolfram Alpha. However, there may be some discrepancies in the solution and further clarification is needed.
  • #1
luckis11
272
2
https://en.wikipedia.org/wiki/Elastic_collision
μα+mβ=μx+my,
μα^2+mβ^2=μx^2+my^2
I want x in relation of all variables except y, therefore I need to replace-eliminate y:
μα+mβ=μx+my =>y=(μα+mβ-μx)/m
μα^2+mβ^2=μx^2+my^2=>y=((μα^2+mβ^2-μx^2)/m)^0.5
and it is eliminated if I equate these two parts of the two equalities with which y is equal to:
((μα+mβ-μx)/m)^2=(μα^2+mβ^2-μx^2)/m=>
(μα+mβ-μx)^2/m=μα^2+mβ^2-μx^2,
A=μα, Β=mβ, C=μx,
(A+B-C)^2=Α^2+ΑΒ-ΑC+AB+B^2-BC-AC-BC+C^2= Α^2+2ΑΒ-2ΑC+B^2-2BC+C^2=>
μ^2α^2+2μαmβ-2μαμx+m^2β^2-2mβμx+μ^2x^2=mμα^2+m^2β^2-mμx^2
so far wolframalfa answers x=(-m α + 2 m β + α μ)/(m + μ) which is the solution according to theory. But the last relation is equivalent with the trionym:
μ^2x^2+mμx^2-2μαμx-2mβμx+μ^2α^2+2μαmβ-mμα^2=0
A=μ^2+mμ, Β= -2αμ^2-2mβμ, C=μ^2α^2+2μαmβ-mμα^2,
Αx^2+Bx+C=0=>x=(-B+-(B^2-4AC)^0.5)/(2A)=>
x=(-(-2αμ^2-2mβμ)+-((-2αμ^2-2mβμ)^2-4(μ^2+mμ)(μ^2α^2+2μαmβ-mμα^2))^0.5)/
(2(μ^2+mμ))
And the latter equation is what also wolframalfa answers now!
And not only this does not seem how it can be factorized, but replacing arithmetic values:
(-m α + 2 m β + α μ)/(m + μ), m=2, α=3, β=5, μ=7=>35/9
(2*3*7^2+2*5*7*2+((-2*3*7^2-2*5*7*2)^2-4(7^2+7*2)(3^2*7^2-3^2*7*2+2*3*5*7*2))^0.5)/(2(2^2+2*7))=245/18≠35/9
(2*3*7^2+2*5*7*2-((-2*3*7^2-2*5*7*2)^2-4(7^2+7*2)(3^2*7^2-3^2*7*2+2*3*5*7*2))^0.5)/(2(2^2+2*7))=21/2≠35/9
whereas:
(7^2)x^2+2*7*x^2-2*49*3x-2*2*5*7*x+49*3^2+2*7*3*2*5-2*7*3^2=0=>x=35/9
Where is the mistake?
 
  • Wow
Likes PeroK
Physics news on Phys.org
  • #2
unreadable...
 
  • Like
Likes berkeman
  • #3
Arjan82 said:
unreadable...
Agreed. Thread closed for Moderation...
 
  • #4
Thread will remain closed. I have asked the OP to start a new thread using the "LaTeX Guide" link below the edit window, and pay attention to good paragraph structure and whitespace.
 
Back
Top