Electric Potential Homework: Gauss's Law, Integrals, Bounds

AI Thread Summary
The discussion centers on solving a homework problem involving a coaxial cable with varying charge densities. Participants express confusion about integrating to find the enclosed charge (Qencl) and the implications of strict inequality bounds in the integration process. They clarify that for regions where s is less than or equal to a or b, the approach to using Gaussian surfaces may differ, potentially requiring multiple surfaces for accurate calculations. The consensus is that for s greater than b, the electric field is zero due to the overall neutrality of the cable. The conversation emphasizes understanding the application of Gauss's law and the significance of integration bounds in determining electric fields and potential differences.
Aero6
Messages
5
Reaction score
0

Homework Statement


A long coaxial cable carries a volume charge density rho=alpha*s on the inner cylinder (radius a) and a uniform surface charge density on the outer cylindrical shell (radius b). This surface charge is negative and of just the right magnitude so that the cable as a whole is electrically neutral.
a)Find the electric field in each of the three regions:
s<a, a<s<b, s>b

b)find the potential difference in each of these regions with a refernce point at infinity


Homework Equations


Gauss's law integral of E*da = Qencl/epsilon
V=-integral E*dl

The Attempt at a Solution


b) a<s<b
I'm confused about integrating to find Qencl. Qencl=integral rho*dtao where dtao=s*ds*dtheta*dz, but when I set up the bounds on the integral for s, I don't understand which bounds I am supposed to include. Since there is a less than sign and not a less than or equal to sign when the problem says that s is greater than a and less than b, how is it okay to integrate so from a to an arbitrary distance that is less than b? Isn't this still including the distance a, which we shouldn't do because of the strict greater than sign? Also, how would this problem change if I was asked to find the electric field in the region: s is greater than OR equal to a and less than or equal to b?

Thank you
 
Physics news on Phys.org
What shape is your Gaussian enclosure? I'm thinking of an infinitely long cylinder with the cable in the center. For the s > b, the total charge inside this is zero so an easy answer.
For a < s < b, there is charge and there may be some difficulty with charge and area being infinite but if you think "very long" instead of infinite, all that should cancel out. I don't even see the need for an integral - just the formula for the surface area of a cylinder.
 
The shape I'm using is a gaussian cylinder. Right, so the electric field for s> b is 0 because the coaxial cable is neutral, so we do not see any charge outside. The electric field for s<a can be solved using: E-field=Qencl/2*pi*r*L and Qencl can be found by using: Qencl=integral of rho*dtao, where dtao is rdr*dtheta*dz and plugging in Qencl into Gauss's law. I don't think I phrased my question correctly. in some coaxial problems we are told to find the electric field in the region between the cables where a<s<b where s is the radius of our Gaussian surface. In another problem (also dealing with a coaxial cable), the question has asked to find the electric field in the region where s is greater than OR EQUAL TO a and s is LESS THAN OR EQUAL TO b. Does the less than or equal to make a difference from a problem that does not ask less than or equal to? I know Gauss's law says that no points outside of our gaussian surface will act on the electric field inside our Gaussian surface, but for questions that ask less than or equal to, is it necessary to use 2 gaussian surfaces? one that integrates from a to s and one that integrates from s to b?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top