Electrostatic Energy in the Hydrogen Atom

AI Thread Summary
The discussion focuses on calculating the electrostatic energy in a hydrogen atom modeled as a charge distribution with a proton and a surrounding negative charge density. The key challenge is determining the electrostatic energy in the outer region of the sphere defined by the Bohr radius, a0. Participants suggest using Gauss's law to compute the electric field as a function of radius and then applying the energy density formula U=E^2/(8π) to find the electric field energy. There is some confusion regarding whether the question pertains to the energy of charge distributions interacting with the electric field or just the electric field energy itself. Overall, the approach involves calculating the charge density, electric field, and energy for both regions inside and outside the sphere.
Keiner Nichts
Messages
13
Reaction score
1

Homework Statement


We model the Hydrogen atom as a charge distribution in which the proton (a point charge) is surrounded by negative charge with the volume density of ρ = -ρ0 * exp (-2r/a0) where a0 is the Bohr radius. And ρ0 is a constant chosen such that the entire atomic distribution is neutral. What is the electrostatic energy contained within the electric field of outer region of the sphere of radius a0?

Homework Equations

The Attempt at a Solution


I have tried reducing the sphere to a point charge, but it doesn't work for neutral distributions (Should've figured that sooner.) Generally, I've tried to apply everything I could as far as the formula W (energy) = ∫ φ * dq goes (where φ is the electrostatic potential, and dq is the charge.)
 
Physics news on Phys.org
I think you need to build up the charge density around the proton as a function of radius and as you begin to add layers of negative charge, the electric field and the potential will be reduced in amplitude. Besides the negative electrostatic energy from the negative electric charge distribution, the electric field energy density has a term that i believe is ## U=E^2/(8 \pi) ## in cg.s. units. The question seems to be asking for the electric field energy for ## r>a_o ##, but the question doesn't appear to be entirely clear. The electric field can be computed as a function of r using Gauss's law. The question being asked seems to need some additional clarification. By electrostatic energy, do they mean electric charge distribution interacting with electric field or just the electric field energy?
 
I reckon merely the electric field energy. Though, unfortunately, that is as clear as the question gets...For a superficial distribution I was able to simply assess the potential of interaction between the proton and the electron, and also the potential the electron generates when it interacts with itself, then I used said potential to calculate the energy as the sum between the two respective interaction energies. Though it seems that making it a volume distribution rather than a surface one complicates things further.
 
Keiner Nichts said:
I reckon merely the electric field energy. Though, unfortunately, that is as clear as the question gets...For a superficial distribution I was able to simply assess the potential of interaction between the proton and the electron, and also the potential the electron generates when it interacts with itself, then I used said potential to calculate the energy as the sum between the two respective interaction energies. Though it seems that making it a volume distribution rather than a surface one complicates things further.
Suggestion is to first compute the constant ## \rho_o ## and then compute the electric field as a function of ## r ## (a simple calculation involving Gauss's law.). Finally, compute the electric field energy (as a function of ## r ##) from energy density ## U=E^2/(8 \pi) ##. (Please check this formula but I think I got it correct.) I would compute the electric field energy for both cases ## r<a_o ## and ## r>a_o ## and then even add them for the total electric field energy. It would appear they are not interested in the electrostatic energy of the form ## W=q \phi ##. Note: Gauss law in cgs units reads ## \int E \cdot dA=4 \pi Q ## where ## Q ## is enclosed charge. (The problem can also be worked in mks units where Gauss law has ## Q/\epsilon_o ## on the right side and the energy density expression also has a different constant.)
 
Last edited:
  • Like
Likes Keiner Nichts
Thank you. I think I might've reached a rather satisfactory result using the form in mks units. It seems alright dimensionally, at least.
 
  • Like
Likes Charles Link
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top