I Energy from quantum systems in an expanding universe?

Suekdccia
Messages
352
Reaction score
30
TL;DR Summary
Does the expansion of spacetime affect the conservation of energy at a quantum level?
I found a paper (https://arxiv.org/pdf/astro-ph/0411299.pdf) which talks about quantum systems emitting energy due to spacetime expansion. Is this true or only a hypothesis?
 
Physics news on Phys.org
Suekdccia said:
I found a paper (https://arxiv.org/pdf/astro-ph/0411299.pdf) which talks about quantum systems emitting energy due to spacetime expansion. Is this true or only a hypothesis?
This paper doesn't look like it's been published in a peer-reviewed journal. (If you can find a reference that it has, please post it.)

Assumption A at the bottom of p. 2 is obviously false for our actual universe, since what the paper calls "metric expansion" is a feature of the FRW models which are homogeneous and isotropic, and our universe is very, very far from being homogeneous and isotropic on any length scales smaller than tens to hundreds of millions of light years. The paper's claim on p. 3 that assumption A is "not contradicted by available physical evidence" is simply wrong.

The above by itself, I suspect, would be sufficient for a peer-reviewed journal to reject this paper, since it does not claim to be simply an investigation of a mathematical hypothesis but rather an investigation of something which could be true of our actual universe.

Assumptions B and C on p. 3 of the paper could be taken as correct with an appropriate interpretation of the words they use; but unfortunately that is not the interpretation that the paper gives them. The "contraction" of bound systems in comoving coordinates is not a physical effect, it's a coordinate effect. And bound systems, such as galaxy clusters, galaxies, stars, and planets, while they technically can only radiate energy in finite sized quanta (since that is the case for any system), radiate amounts of energy in the course of formation that are so many orders of magnitude larger than the size of the energy quanta they radiate that the continuous approximation, i.e., the classical approximation, is more than good enough and there is no need to consider any quantum specific properties of radiation in order to analyze their behavior.

So the whole basis of the paper's argument appears to me to be wrong.
 
  • Like
Likes vanhees71, topsquark and phinds
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top