- #1
shamieh
- 539
- 0
Hey, its me again, just needing someone to verify my findings. Thanks in advance.
\(\displaystyle
\int ^{\infty}_0 \frac{1}{e^{3x}} \, dx = \lim_{a\to\infty} \frac{1}{3} \int ^{3a}_0 e^{-u} \, dx\)
u = 3x ,,,,,, du/3 = dx
skipping a few steps...
\(\displaystyle \lim_{a\to\infty} -\frac{1}{3}e^{-u} |^{3a}_0 = 0 + \frac{1}{3} \) thus: t < 1 so: as \(\displaystyle \lim_{a\to\infty}\) converges
\(\displaystyle
\int ^{\infty}_0 \frac{1}{e^{3x}} \, dx = \lim_{a\to\infty} \frac{1}{3} \int ^{3a}_0 e^{-u} \, dx\)
u = 3x ,,,,,, du/3 = dx
skipping a few steps...
\(\displaystyle \lim_{a\to\infty} -\frac{1}{3}e^{-u} |^{3a}_0 = 0 + \frac{1}{3} \) thus: t < 1 so: as \(\displaystyle \lim_{a\to\infty}\) converges