MHB Evaluating the Integral Using the Clausen Function

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Challenge Integral
AI Thread Summary
The integral $$\int_0^{\theta}\frac{x^2}{\sin x} \, dx$$ for $$0 < \theta \le \pi/2$$ can be evaluated using the Clausen function. The closed form of the integral is given by the expression $$\theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3)+4\theta \text{Cl}_2(\theta)-\theta \text{Cl}_2(2\theta)+4\text{Cl}_3(\theta)-\frac{1}{2}\text{Cl}_3(2\theta)$$. The discussion emphasizes the use of the Clausen function in evaluating trigonometric integrals. This approach highlights the connection between special functions and integral calculus. The solution provides a comprehensive method for tackling similar integrals.
DreamWeaver
Messages
297
Reaction score
0
Find a closed form evaluation for the following trigonometric integral, where the $$0 < \theta \le \pi/2$$:$$\int_0^{\theta}\frac{x^2}{\sin x} \, dx= \text{?}$$

Hint:

Consider

$$\int_0^{\theta} x\log \left(\tan \frac{x}{2} \right)\, dx$$

and then express this logtangent integral in terms of Clausen functions, by splitting logtan into logsin + logcos integrals...
 
Mathematics news on Phys.org
Hi all, this is my first post on Math Help Boards. :)

The answer to this problem is
$$\theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3)+4\theta \text{Cl}_2(\theta)-\theta \text{Cl}_2(2\theta)+4\text{Cl}_3(\theta)-\frac{1}{2}\text{Cl}_3(2\theta)$$

where $\text{Cl}_n(z)$ denotes the Clausen Function.

Proof:
Let $I$ denote our integral. On applying integration by parts we obtain

$$
I=\theta^2 \log \tan \frac{\theta}{2}-2\int_0^{\theta}x \log \tan \frac{x}{2}\; dx
$$

Now, we invoke the Fourier series of $\log \tan \frac{x}{2}$:

$$\log \tan \frac{x}{2}=-2 \sum_{n=1}^\infty \frac{\cos(2n-1)x}{2n-1}$$

It follows that

$$
\begin{align*}
I &= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\int_0^{\theta}x \cos(2n-1)x \; dx \\
&= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\left\{\theta \frac{\sin(2n-1)\theta}{2n-1}-\frac{1}{2n-1}\int_0^\theta \sin(2n-1)x dx\right\} \\
&= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\left\{\theta \frac{\sin(2n-1)\theta}{2n-1}+\frac{\cos(2n-1)\theta -1}{(2n-1)^2}\right\} \\
&= \theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3) +4\theta \sum_{n=1}^\infty \frac{\sin(2n-1)\theta}{(2n-1)^2}+4\sum_{n=1}^\infty \frac{\cos (2n-1)\theta}{(2n-1)^3} \\
&= \theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3)+4\theta \text{Cl}_2(\theta)-\theta \text{Cl}_2(2\theta)+4\text{Cl}_3(\theta)-\frac{1}{2}\text{Cl}_3(2\theta)
\end{align*}
$$

In the last step, I used

$$
\begin{align*}\sum_{n=1}^\infty \frac{\cos(2n-1)\theta}{(2n-1)^3} &=\text{Cl}_3(\theta)-\frac{1}{8}\text{Cl}_3(2\theta) \\
\sum_{n=1}^\infty \frac{\sin(2n-1)\theta}{(2n-1)^2}&=\text{Cl}_2(\theta)-\frac{1}{4}\text{Cl}_2(2\theta)
\end{align*}
$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top