- #1
kelly0303
- 580
- 33
Hello! Assume I have a classical system at a fixed temperature, such that the energy can be described by a Boltzmann distribution at that temperature. If I have a huge number of such systems in that state, and I measure the energy of each one, independently, the probability of measuring a given energy would reach the Boltzmann distribution (in the limit of a large number of measurements). However, if I measure the energy of a system to be ##E_1## and a time ##t## later I measure the same system, and I repeat that many times, would I still get a Boltzmann distribution. My question here is in the classical case, I am not talking about wavefunction collapse (also the way you measure the energy shouldn't be important either). My question mainly is, are the measurements correlated, such that for a given time interval between measurements, the probability of the second measurement depends on the value of the first one?