- #1
thidmir
- 5
- 1
- TL;DR Summary
- I am trying to find if there is a way to prove the existence and uniqueness of a solution
to a first order ODE on an interval including infinity.
I am trying to find a way to prove that a certain first order ode has a unique
solution on the interval (1,infinity). Usually the way to do this is to show that
if x' = f(t,x) (derivative with respect to t), then f(t,x) and the partial derivative with respect to f are continuous.
However, this would show that a solution exists only on an interval inside (1,infinity).
Is there any way to show that a solution exists on the entire interval?
solution on the interval (1,infinity). Usually the way to do this is to show that
if x' = f(t,x) (derivative with respect to t), then f(t,x) and the partial derivative with respect to f are continuous.
However, this would show that a solution exists only on an interval inside (1,infinity).
Is there any way to show that a solution exists on the entire interval?