Exit flow rate in a Plate Heat Exchanger

AI Thread Summary
The discussion revolves around calculating the flow characteristics in a cascade system of plate heat exchangers used for heating water. The initial setup involves hot water from a boiler entering the first heat exchanger at 65°C and exiting at 50°C, while the second heat exchanger heats water from 10°C to 45°C. The main inquiry is whether pressure loss in the heat exchanger affects the velocity and flow rate of the water at the outlet. It was clarified that while pressure loss exists, it does not significantly change the velocity or mass flow rate of the fluid. The participant now understands that the mass flow rate remains constant despite pressure variations.
harishree90
Messages
3
Reaction score
0
TL;DR Summary
Calculation of Exit Mass flow rate in a Plate Heat Exchanger to design a Cascade Heating Network
Hello All,

I am working on a project with plate heat exchangers connected in a cascade system to heat up water connections in a huge system

The Problem Statement :

A boiler produces and circulates hot water at 65 degC to a Heat Exchanger and come out at 50 degC, where as the other fluid is also water which needs to be heated to 60 degC from 45 degC , The volume flow rate of hot water is at 5.0 m3/hr and the dia meter of the pipe is DN50

Using energy Equilibrium , Heat transfer rate in the first heat exchanger

Q = m X Cp X ΔT which come around 85KW
HX.jpg

now from the outlet of the Heat Exchange in the hot Side which is at 50 degC, I am connecting it as an Input to another heat Exchanger, which is also used to heat water from 10 degC to 45 degC and the hot water connected back to the Boiler which is at 15 degC

My question is, how can I calcuate the volume flow rate or mass flow rate or velocity of water at the outlet in the first heat exchanger which acts as an Input to second HX, so that I can calculate the heat transfer rate of the second HX to determine if need to have a pump in the circuit.

Thanks in Advance
If my question is not clear please let me know
 
Engineering news on Phys.org
Hello harishree, :welcome:

Your question is indeed unclear to me: if the volume flow is not 5 m3/h, where would the difference go ?

And the 5 m3/h, where does that come from, if not from a pump ?

Or:
With 'outlet' you mean the 60 C outlet ? Your heat exchange rate of 87 kW more or less dictates 5 m3/h too (with the given ##\Delta##T)
 
  • Like
Likes harishree90
BvU said:
Hello harishree, :welcome:

Your question is indeed unclear to me: if the volume flow is not 5 m3/h, where would the difference go ?

And the 5 m3/h, where does that come from, if not from a pump ?

Or:
With 'outlet' you mean the 60 C outlet ? Your heat exchange rate of 87 kW more or less dictates 5 m3/h too (with the given ##\Delta##T)

Thank you for the reply

The 5 m3/h volume flow at the inlet of the heat exchanger comes from a hot water boiler.

And by Outlet I mean the output with 50 C which acts as a input to the second heat exchanger.

My question is ...due to pressure loss in the heat exchanger (Considering 0,1 bar), will there be a change in velocity of the fluid at the exit (at 50 C) ?
 
harishree90 said:
Thank you for the reply

The 5 m3/h volume flow at the inlet of the heat exchanger comes from a hot water boiler.

And by Outlet I mean the output with 50 C which acts as a input to the second heat exchanger.

My question is ...due to pressure loss in the heat exchanger (Considering 0,1 bar), will there be a change in velocity of the fluid at the exit (at 50 C) ?
No significant change. And, of course, the mass flow rate won't change at all.
 
  • Like
Likes harishree90
Chestermiller said:
No significant change. And, of course, the mass flow rate won't change at all.

Thank you for the explanation Chestermiller and BvU

I was under the wrong idea that since there will be a pressure loss in the heat exchanger, it would affect the velocity and the flow rate also.
Now I understand
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
TL;DR Summary: Heard in the news about using sonar to locate the sub Hello : After the sinking of the ship near the Greek shores , carrying of alot of people , there was another accident that include 5 tourists and a submarine visiting the titanic , which went missing Some technical notes captured my attention, that there us few sonar devices are hearing sounds repeated every 30 seconds , but they are not able to locate the source Is it possible that the sound waves are reflecting from...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top