- #1
Mondon
- 3
- 0
Homework Statement
[tex]\frac{dx}{dy}=\frac{k y-40\sqrt{x^2+y^2}}{k x} [/tex]
Given the parameters conditions (0,0),(1000,0)
Homework Equations
substitution [tex] v=\frac{x}{y}[/tex]
The Attempt at a Solution
[tex]\frac{dv}{\frac{1}{v}-v-\frac{40}{k v}\sqrt{v^2+1}}=\frac{dy}{y}[/tex]
[tex]\frac{-1}{2}\ln({40\sqrt{v^2+1}+k+v^2k})=\ln{(y)}+c[/tex]
[tex]k(\frac{x^2}{y^2}-1)+40\sqrt{1+\frac{x^2}{y^2}}=cy^{-2}[/tex]
Sooo how could I possibly use my limits? I end up with a discontinuity at y=0 or is there some horrible mistake in my solution?
Last edited: