- #71
JesseM
Science Advisor
- 8,520
- 16
I don't quite understand what you mean by "parallel to the cylinder". Do you mean looking at a 2D section of 3D space in which all the points in this section are at the same radius from the cylinder? And for a very large flat body, the curvature of spacetime may be negligible if you choose a region of space where the distance between the bottom of the region and the top is very small compared to the size of the body, so that in Newtonian terms the gravitational force can be treated as pretty much constant in the region, but you'd still see curvature if you picked a much larger region. That's my point, the equivalence principle is all about picking a region of curved spacetime that's small enough that the curvature can be treated as negligible in that region.kev said:Sure it would curve it around the cylinder, but parallel to the cylinder it would be horizontally flat. What if we replaced the cylinder with flat body with "almost" infinite horizontal dimensions?
We've discussed this before, but I'm not convinced that it does fall faster. And even if it does, this wouldn't be incompatible with the Equivalence principle if you could show that if you have two inertial bodies above a platform that's accelerating upwards in flat SR spacetime, with one body moving horizontally relative to the platform while the other is not, then in the frame of the body moving horizontally relative to the platform, the surface of the platform would accelerate up to meet it more quickly than for the other body (this would only be true if in the frame of the body moving horizontally, different parts of the platform are accelerating at different rates, which might or might not be true, as I've said before we'd really need to do the math to check).kev said:So why does GR predict that a particle moving horizontally falls faster than a particle without horizontal motion?