- #1
Aleolomorfo
- 73
- 4
I am studyng accretion process on "Astrophysics in a nutshell" by Dan Maoz and I have some doubts about the derivation of the formula for the eddington limit. I understand what the edding limit is. The accretion rate cannot be arbitrarly large. The starting point is to consider an electron at a radius ##r## in an ionized gas that is taking part in an accretion flow towards some compact object. The accretion flow produces a luminosity per frequency interval ##L_\nu##, and therefore the density of photons with energy ##h\nu## at ##r## is:
$$n_{ph}=\frac{L_\nu}{4\pi r^2 ch\nu}$$
I do not understand why the density of photons is written in this way. I see that it is dimensionally correct but I do not see the reason.
##\frac{L_\nu}{4\pi r^2}## is the flux of photons with frequency ##\nu## but I do not understand why it is divided by ##ch\nu##.
$$n_{ph}=\frac{L_\nu}{4\pi r^2 ch\nu}$$
I do not understand why the density of photons is written in this way. I see that it is dimensionally correct but I do not see the reason.
##\frac{L_\nu}{4\pi r^2}## is the flux of photons with frequency ##\nu## but I do not understand why it is divided by ##ch\nu##.