- #36
Dale
Mentor
- 35,780
- 14,223
It is zero from (qv x B).v. This follows from the standard vector algebra identities for the scalar triple product:pleco said:How did you get zero from "qv x B"?
##(q \mathbf{v} \times \mathbf{B}) \cdot \mathbf{v}##
##q \mathbf{v} \cdot (\mathbf{v} \times \mathbf{B})## by commutativity of dot product
##q \mathbf{B} \cdot (\mathbf{v} \times \mathbf{v})## by circular shift property of scalar triple product
##q \mathbf{B} \cdot (\mathbf{0})## by anti-commutivity of the cross product
## 0##
Basically, the cross product gives a vector perpendicular to v, and the dot product of v and a vector perpendicular to v is 0.
Last edited: