MHB Exponential Growth & Decay Question

AI Thread Summary
The discussion revolves around solving exponential decay equations related to Kool-Aid powder in water. Two equations are established based on the remaining amounts after specific time intervals: 3 grams after 1 minute and 1 gram after 3 minutes. The user successfully finds the decay constant k and the initial amount of Kool-Aid powder, x(not), with k calculated as approximately 0.549 and x(not) as approximately 5.196. Another participant suggests expressing these values in exact form rather than decimals. The conversation concludes with a focus on the importance of precise mathematical representation.
ISITIEIW
Messages
17
Reaction score
0
Suppose that there is initially x(not) grams of Kool-Aid powder in a glass of water. After 1 minute there are 3 grams remaining and after 3 minutes there is only 1 gram remaining. Find x(not) and the amount of Kool-Aid powder remaining after 5 minutes…

So, i set up 2 equations…

3=x(not)e^-k(1)

and 1=x(not)e^-k(3)

I know it is decaying ,but i don't know what i have to do with these equations that i made to find the value of k.

Thanks !
 
Mathematics news on Phys.org
Since there is no actual calculus involve in solving this problem, I am going to move the topic to our Pre-Calculus sub-forum.

You're off to a good start:

$$x_0e^{-k}=3$$

$$x_0e^{-3k}=1$$

I think what I would do next is solve both equations for $x_0$ and equate:

$$x_0=3e^{k}=e^{3k}$$

Next try dividing through by $e^k$ and then convert from exponential to logarithmic form.
 
Thanks!
I got k to be 0.549306144
and got a x(not) value of 5.196152423

I got it from here !
Thanks :)
 
ISITIEIW said:
Thanks!
I got k to be 0.549306144
and got a x(not) value of 5.196152423

I got it from here !
Thanks :)

You're welcome! :D

I would get in the habit of obtaining/writing exact values rather than decimal approximations. I find:

$$k=\ln\left(\sqrt{3} \right)$$

$$x_0=3\sqrt{3}$$

I realize it is possible that you found these values and simply chose to write the approximations. (Angel)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top