MHB Expressing a polynomial P(x)=(x−a)^2(x−b)^2+1 by two other polynomials

AI Thread Summary
The polynomial P(x) = (x-a)²(x-b)² + 1, where a and b are distinct integers, cannot be factored into two nonconstant polynomials with integer coefficients. The discussion emphasizes the need for a proof to establish this fact. Participants share different approaches to the problem, highlighting the complexity of polynomial factorization. The conversation includes expressions of appreciation for contributions and alternative solutions. Ultimately, the consensus is that the polynomial's structure prevents such a factorization.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a$ and $b$ be two integer numbers, $a \ne b$. Prove, that the polynomial:

$$P(x) = (x-a)^2(x-b)^2 + 1$$

cannot be expressed as a product of two nonconstant polynomials with integer coefficients.
 
Mathematics news on Phys.org
lfdahl said:
Let $a$ and $b$ be two integer numbers, $a \ne b$. Prove, that the polynomial:

$$P(x) = (x-a)^2(x-b)^2 + 1$$

cannot be expressed as a product of two nonconstant polynomials with integer coefficients.

by letting t = x - a and hence x-b = t + a -b = t -c where c = b- a we get

$t^2(t-c)^2 + 1$ another polinomial in t

above has minimum value of 1 so this does not have linear factor as no real zero.

so we need to check if it has 2 quadratoc factors

1 can be expressed as 1 * 1 or - 1 * - 1 so we have 2 choices

$(t^2+nt +1)(t^2-nt + 1)$ n and -n because there is no term in t

this gives that there is no term in $t^3$ which is contradiction

similarly $(t^2+nt -1)(t^2-nt - 1)$ is ruled out

hence it cannot be factored
 
kaliprasad said:
by letting t = x - a and hence x-b = t + a -b = t -c where c = b- a we get

$t^2(t-c)^2 + 1$ another polinomial in t

above has minimum value of 1 so this does not have linear factor as no real zero.

so we need to check if it has 2 quadratoc factors

1 can be expressed as 1 * 1 or - 1 * - 1 so we have 2 choices

$(t^2+nt +1)(t^2-nt + 1)$ n and -n because there is no term in t

this gives that there is no term in $t^3$ which is contradiction

similarly $(t^2+nt -1)(t^2-nt - 1)$ is ruled out

hence it cannot be factored
Very nice, kaliprasad! Thankyou for your participation!The suggested solution differs a bit from kaliprasads, so I will post it here:

Suppose $P(x)$ is a product of two polynomials. Then these polynomials are monic and both have degree $2$, since the coefficient of $P(x)$ at $x^4$ is $1$, and $P(x) > 0$ has no real roots:

\[P(x) = (x^2+px+q)(x^2+rx+s)\]

At $x=a$ and $x=b$, $P(x)=1$, therefore: $x^2+px+q=x^2+rx+s = \pm 1$. Thus $px-rx+q-s$ has two different roots, $a$ and $b$, and therefore is identically zero: $p=r$ and $q=s$.

Then, we have: $P(x) = (x-a)^2(x-b)^2 + 1=(x^2+px+q)^2$.

Since, the only two squares, that differ by $1$ are $0^2$ and $1^2$, $P(x) = 1$. A contradiction.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top