MHB Expressing sin/cos(2θ) in terms of x....

  • Thread starter Thread starter TrigEatsMe
  • Start date Start date
  • Tags Tags
    Terms
AI Thread Summary
The discussion focuses on expressing trigonometric functions in terms of a variable x. The user successfully derived the formula for sin(2θ) as (2x/9)√(9-x^2) when x = 3cos(θ). However, they encountered difficulties with the expression for cos(2θ) when x + 1 = 3sin(θ). After some calculations, they found cos(2θ) to be (7 - 4x - 2x^2)/9. The thread seeks further clarification and tips on handling the transformation involving x + 1.
TrigEatsMe
Messages
6
Reaction score
0
For the question,
If x = 3cos(θ), 0<θ<π/2, express sin(2θ) in terms of x.

I confirmed that the following is correct:
sin(2θ)=(2x/9)√(9-x^2)

But for this next one...the x+1 is throwing me through a loop or something.

If x+1 = 3sin(θ), 0<θ<π/2, express cos(2θ) in terms of x.

cos(2θ) = fail

Any tips would be appreciated. Thanks!
 
Mathematics news on Phys.org
TrigEatsMe said:
For the question,
If x = 3cos(θ), 0<θ<π/2, express sin(2θ) in terms of x.

I confirmed that the following is correct:
sin(2θ)=(2x/9)√(9-x^2)

But for this next one...the x+1 is throwing me through a loop or something.

If x+1 = 3sin(θ), 0<θ<π/2, express cos(2θ) in terms of x.

cos(2θ) = fail

Any tips would be appreciated. Thanks!

$\displaystyle \begin{align*} \cos{ \left( 2\theta \right) } &= 1 - 2\sin^2{ \left( \theta \right) } \\ &= 1 - 2 \left( \frac{x + 1}{3} \right) ^2 \\ &= 1 - 2 \left( \frac{x^2 + 2x + 1}{9} \right) \\ &= 1 - \frac{2x^2 + 4x + 2}{9} \\ &= \frac{9}{9} - \frac{2x^2 + 4x + 2}{9} \\ &= \frac{7 - 4x - 2x^2}{9} \end{align*}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top