- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to write a version of [m]FastFourierTransform(fft)[/m] for the case that $N$ is a power of $3$, seperating the input-vector into $3$ subvectors, solving the problem recursively at them and combining the solutions of the subproblems.
I have tried the following:
We assume that $N$ is a power of $3$ ($N=3^m$)
$f(x)=a_0+a_1x+ \dots +a_{N-1}x^{N-1}$
$f_0=a_0+a_3x^3+a_6x^6+ \dots +a_{N-3}x^{N-3}$
$f_1=a_1+a_4x^3+a_7x^6+ \dots +a_{N-2}x^{N-3}$
$f_2=a_2+a_5x^3+a_8x^6+ \dots +a_{N-1}x^{N-3}$
$f(x)=f_0(x)+xf_1(x)+x^2f(x)$
Now do we have to calculate the Fourier Transform of $f_0, f_1$ and $f_2$? (Thinking)Is the dicrete Fourier transform of $f$ the following? $$\sum_{m=0}^{N-1}fe^{\frac{-2\pi i km}{N}}=\sum_{m=0}^{\frac{N}{3}-1}f_{3m}e^{-\frac{2\pi ik(3m)}{N}}+\sum_{m=0}^{\frac{N}{3}}f_{3m+1}e^{-\frac{2\pi ik(3m+1)}{N}}+\sum_{m=0}^{\frac{N}{3}-1}f_{3m+2}e^{-\frac{2\pi ik(3m+2)}{N}}$$
So do we have to calculate the following sums?
I want to write a version of [m]FastFourierTransform(fft)[/m] for the case that $N$ is a power of $3$, seperating the input-vector into $3$ subvectors, solving the problem recursively at them and combining the solutions of the subproblems.
I have tried the following:
We assume that $N$ is a power of $3$ ($N=3^m$)
$f(x)=a_0+a_1x+ \dots +a_{N-1}x^{N-1}$
$f_0=a_0+a_3x^3+a_6x^6+ \dots +a_{N-3}x^{N-3}$
$f_1=a_1+a_4x^3+a_7x^6+ \dots +a_{N-2}x^{N-3}$
$f_2=a_2+a_5x^3+a_8x^6+ \dots +a_{N-1}x^{N-3}$
$f(x)=f_0(x)+xf_1(x)+x^2f(x)$
Now do we have to calculate the Fourier Transform of $f_0, f_1$ and $f_2$? (Thinking)Is the dicrete Fourier transform of $f$ the following? $$\sum_{m=0}^{N-1}fe^{\frac{-2\pi i km}{N}}=\sum_{m=0}^{\frac{N}{3}-1}f_{3m}e^{-\frac{2\pi ik(3m)}{N}}+\sum_{m=0}^{\frac{N}{3}}f_{3m+1}e^{-\frac{2\pi ik(3m+1)}{N}}+\sum_{m=0}^{\frac{N}{3}-1}f_{3m+2}e^{-\frac{2\pi ik(3m+2)}{N}}$$
So do we have to calculate the following sums?
- $\sum_{m=0}^{\frac{N}{3}-1}f_{3m}e^{-\frac{2\pi ik(3m)}{N}}$
- $\sum_{m=0}^{\frac{N}{3}}f_{3m+1}e^{-\frac{2\pi ik(3m+1)}{N}}$
- $\sum_{m=0}^{\frac{N}{3}-1}f_{3m+2}e^{-\frac{2\pi ik(3m+2)}{N}}$