- #1
Dustinsfl
- 2,281
- 5
I have shown the first two equality and I am working on the showing the 1st equals the 3rd.
\begin{alignat*}{4}
\frac{1}{\rho}\hat{\mathbf{{n}}} &= \frac{d\hat{\mathbf{{u}}}}{ds}
&{}= \frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}}
&{}= \left((\dot{\mathbf{r}} \cdot\dot{\mathbf{r}})\ddot{\mathbf{r}} -
(\dot{\mathbf{r}}\cdot\ddot{\mathbf{r}}) \dot{\mathbf{r}}\right)
\frac{1}{\lvert\dot{r}\rvert^4}
\end{alignat*}
$$
\frac{1}{\rho}\hat{\mathbf{{n}}} = \frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}}
$$
We know that $\mathbf{v} = \frac{ds}{dt}\frac{dr}{ds}$ where $\dot{s} = v$ and $\hat{\mathbf{u}} = \frac{dr}{ds}$.
So $\mathbf{v} = v\hat{\mathbf{u}}\iff \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt}$.
Then $\frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}} = \frac{1}{v^2}\frac{d\mathbf{v}}{dt}$.
I know that
$$
\frac{d\mathbf{v}}{dt} = \frac{dv}{dt}\hat{\mathbf{u}} + \frac{v^2}{\rho}\hat{\mathbf{n}}.
$$
Then $\frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}} = \frac{1}{v^2}\frac{dv}{dt}\hat{\mathbf{u}} + \frac{1}{\rho}\hat{\mathbf{n}}$.
Therefore, $\frac{1}{v^2}\frac{dv}{dt}\hat{\mathbf{u}} = 0$ but how do I show that this is $0$?
\begin{alignat*}{4}
\frac{1}{\rho}\hat{\mathbf{{n}}} &= \frac{d\hat{\mathbf{{u}}}}{ds}
&{}= \frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}}
&{}= \left((\dot{\mathbf{r}} \cdot\dot{\mathbf{r}})\ddot{\mathbf{r}} -
(\dot{\mathbf{r}}\cdot\ddot{\mathbf{r}}) \dot{\mathbf{r}}\right)
\frac{1}{\lvert\dot{r}\rvert^4}
\end{alignat*}
$$
\frac{1}{\rho}\hat{\mathbf{{n}}} = \frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}}
$$
We know that $\mathbf{v} = \frac{ds}{dt}\frac{dr}{ds}$ where $\dot{s} = v$ and $\hat{\mathbf{u}} = \frac{dr}{ds}$.
So $\mathbf{v} = v\hat{\mathbf{u}}\iff \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt}$.
Then $\frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}} = \frac{1}{v^2}\frac{d\mathbf{v}}{dt}$.
I know that
$$
\frac{d\mathbf{v}}{dt} = \frac{dv}{dt}\hat{\mathbf{u}} + \frac{v^2}{\rho}\hat{\mathbf{n}}.
$$
Then $\frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}} = \frac{1}{v^2}\frac{dv}{dt}\hat{\mathbf{u}} + \frac{1}{\rho}\hat{\mathbf{n}}$.
Therefore, $\frac{1}{v^2}\frac{dv}{dt}\hat{\mathbf{u}} = 0$ but how do I show that this is $0$?
Last edited: