- #71
deepalakshmi
- 95
- 6
This is my calculation (final state using hamiltonian) for your reference:
The initial state is
$$|\psi(0)\rangle = |\alpha\rangle|0\rangle$$
The time evolved state is
$$|\psi(t)\rangle = e^{-i H t} |\alpha\rangle |0\rangle$$
$$ = e^{-i H t} e^{-\frac{|\alpha|^2}{2}} \sum_n{ \frac{(\alpha)^n}{\sqrt{n!}} \ket{n} } |0\rangle$$
$$ = e^{-i H t} e^{-\frac{|\alpha|^2}{2}} \sum_n{ \frac{(\alpha)^n}{\sqrt{n!}} \frac{(a^\dagger)^n}{\sqrt{n!}} } |0\rangle |0\rangle$$
Inserting ##U U^\dagger##
$$= e^{-\frac{|\alpha|^2}{2}} \sum_n{ \frac{(\alpha)^n}{\sqrt{n!}} e^{-i H t} \frac{(a^\dagger)^n}{\sqrt{n!}} e^{i H t}e^{-i H t}} |0\rangle |0\rangle$$
We know that ##U a^\dagger U^\dagger=(a^\dagger cos t+i b^\dagger sin t )^n##
$$|\psi(t)\rangle =e^{-\frac{|\alpha|^2}{2}} \sum_n \frac{(\alpha)^n}{\sqrt{n!}} \frac{(a^\dagger cos t+i b^\dagger sin t )^n}{\sqrt{n!}} |0\rangle |0\rangle$$
Using binomial expression and using the property ##{(a^\dagger)^{n-p}} |0\rangle = \sqrt{(n-p)!}|(n-p)\rangle##
$$|\psi(t)\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_n \sum_p \frac{\sqrt{n!}}{\sqrt{p!}\sqrt{n-p}!} ((isin(t))^p)((cost(t))^{n-p}\frac{(\alpha)^n}{\sqrt{n!}}|p\rangle|n-p\rangle$$
Substitute ##\alpha^n = {\alpha^p}{\alpha}^{n-p}##
$$|\psi(t)\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_p\frac{((\alpha)^p)(isin(t))^p}{\sqrt{p!}}|p\rangle\sum_{n-p}\frac{((\alpha)^{n-p})(cos(t))^{n-p}}{\sqrt{n-p!}}|n-p\rangle$$
$$|\psi(t)\rangle=|\alpha isin(t)\rangle |\alpha cos(t)\rangle$$
The initial state is
$$|\psi(0)\rangle = |\alpha\rangle|0\rangle$$
The time evolved state is
$$|\psi(t)\rangle = e^{-i H t} |\alpha\rangle |0\rangle$$
$$ = e^{-i H t} e^{-\frac{|\alpha|^2}{2}} \sum_n{ \frac{(\alpha)^n}{\sqrt{n!}} \ket{n} } |0\rangle$$
$$ = e^{-i H t} e^{-\frac{|\alpha|^2}{2}} \sum_n{ \frac{(\alpha)^n}{\sqrt{n!}} \frac{(a^\dagger)^n}{\sqrt{n!}} } |0\rangle |0\rangle$$
Inserting ##U U^\dagger##
$$= e^{-\frac{|\alpha|^2}{2}} \sum_n{ \frac{(\alpha)^n}{\sqrt{n!}} e^{-i H t} \frac{(a^\dagger)^n}{\sqrt{n!}} e^{i H t}e^{-i H t}} |0\rangle |0\rangle$$
We know that ##U a^\dagger U^\dagger=(a^\dagger cos t+i b^\dagger sin t )^n##
$$|\psi(t)\rangle =e^{-\frac{|\alpha|^2}{2}} \sum_n \frac{(\alpha)^n}{\sqrt{n!}} \frac{(a^\dagger cos t+i b^\dagger sin t )^n}{\sqrt{n!}} |0\rangle |0\rangle$$
Using binomial expression and using the property ##{(a^\dagger)^{n-p}} |0\rangle = \sqrt{(n-p)!}|(n-p)\rangle##
$$|\psi(t)\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_n \sum_p \frac{\sqrt{n!}}{\sqrt{p!}\sqrt{n-p}!} ((isin(t))^p)((cost(t))^{n-p}\frac{(\alpha)^n}{\sqrt{n!}}|p\rangle|n-p\rangle$$
Substitute ##\alpha^n = {\alpha^p}{\alpha}^{n-p}##
$$|\psi(t)\rangle = e^{-\frac{|\alpha|^2}{2}} \sum_p\frac{((\alpha)^p)(isin(t))^p}{\sqrt{p!}}|p\rangle\sum_{n-p}\frac{((\alpha)^{n-p})(cos(t))^{n-p}}{\sqrt{n-p!}}|n-p\rangle$$
$$|\psi(t)\rangle=|\alpha isin(t)\rangle |\alpha cos(t)\rangle$$
Last edited: