Figuring out compounding interest

  • Thread starter Thread starter drymetal
  • Start date Start date
  • Tags Tags
    Interest
AI Thread Summary
The discussion focuses on simplifying the calculation of compounding interest for investments with regular contributions. A formula was proposed to calculate the future value of an initial investment plus annual contributions, but discrepancies arose when comparing results from Excel and a manually derived formula. The correct approach involves understanding the timing of contributions and the compounding effect, particularly how annual contributions are treated in relation to the interest calculation. A power series method was suggested to derive a more generalized formula for this scenario. Ultimately, while algebraic solutions are valuable, using a spreadsheet is recommended for flexibility in handling various investment scenarios.
drymetal
Messages
7
Reaction score
0
I talk to people a lot about the power in investing their money. I've always relied on Excel to figure out things though and I'm getting sick of it. So I figured there was a way to do it simpler with math than making gigantic lists that detailed every month and year a person invests money.

So, let's say I have 10,000 and will expect an 8% yearly return on it. I figured out a formula or whatever that will give me the correct answer quickly:

10,000 * 1.08^n

Or say it was for 20 years: 10,000 * 1.08^20

This is great. But it doesn't do a whole lot because people generally contribute money regularly to their investments. Which gets me to my question...


I wanted to keep it simple. Let's say a person has $100. They invest it and can expect to earn 8% every year. Additionally, they add an additional $100 every year. The answer I got in Excel was $4,044.63 after 18 years.

After countless months beating my head against a wall and talking to my cat, I came up with this:

100(1+.08)18+100[((1+.08)18-1)/.08]

However, that equals $4,144.63. And to be honest, I don't remember how the heck I came up with that crazy looking equation. :(

But, it is giving me the wrong answer! By $100! I must be doing something right. lol

Can anyone help me simplify and understand this? Thanks!
 
Mathematics news on Phys.org
Your formula is correct, the difference is that you are assuming that the person invests $10,000 plus an additional $100 on day one. The formula that excel uses is starting the yearly $100 investments at the end of the first year.
 
I don't understand. Is there just a regular formula with x's and y's and all those happy letters that does this? You know, where I can just plug the numbers in. The formula above I forgot how I came up with it.

The answer isn't as important to me as understanding it. Not that I don't want an answer - I do. But I need to understand it. Understanding it is paramount to me. I hope by learning the why - I can figure out equations on my own easier in the future.
 
If the yearly investment and the interest rate are fixed, you could use power series to solve this:

let a = 1.08

you want to calculate the sum a^18 + a^17 + ... + a^1

multiply by a = a^19 + a^18 + ... a^2

subtract the original equation:

Code:
 a^19 + a^18 + ... + a^2
            a^18 + ... + a^2 + a^1
--------------------------------
 a^19                            - a^1

So the result is (a - 1)(a^18 + a^17 + ... + a^1) = (a^19 - a^1)

To get the original number divide by (a-1)

(a^18 + a^17 + ... + a^1) = (a^19 - a^1)/(a-1)

For your case you have 100 x (1.08^19 - 1.08) / (1.08 - 1) ~= 4044.6263239

Although this is nice for doing algebra, it's probably better to use a spread sheet, to handle variations in monthly deposits, changes in interest rates, and also allowing for interest that is compounded monthly (or daily) instead of yearly.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
2K
Replies
2
Views
11K
Replies
2
Views
2K
Replies
9
Views
2K
Replies
2
Views
7K
Replies
5
Views
2K
Back
Top