MHB Find Angles of Spherical Triangle $\mathcal{P}$

AI Thread Summary
The discussion revolves around finding the angles of a spherical triangle defined by vertices at specific coordinates. The cosine of the angles at the vertices is provided, with one angle being zero and the others calculated as 1/sqrt(3). The cosine formula for spherical triangles is mentioned, but the user initially struggles to apply it effectively. Ultimately, the user indicates they have solved the problem, suggesting that the angles have been successfully determined. The conversation highlights the application of spherical trigonometry in calculating triangle angles.
Rorschach
Messages
10
Reaction score
0
Consider the spherical triangle $\mathcal{P}$ with vertices $P_1 = (1,0,0)$, $P_2 = (0,1,0)$ and $P_3 = (1/\sqrt{3}, 1/\sqrt{3},1/\sqrt{3})$. Find the angles $\phi_1, \phi_2, \phi_3$ of $\mathcal{P}$ at $P_1, P_2, P_3$ respectively.

I know the cosine angles are $\cos(\theta_1) = 0$, $\cos(\theta_2) = \cos(\theta_3) = 1/{\sqrt{3}}$. I know the cosine formula is $\cos{c} = \cos{a}\cos{b}+\sin{a}\sin{b}\cos{C}.$ However, I can't put these ideas together to find the angles. Could someone please show me how to do that? Thanks.
 
Mathematics news on Phys.org
I've solved this now!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top