- #1
ineedhelpnow
- 651
- 0
find the exact area of the surface obtained by rotating the given curve about the x-axis. $x=cos^3(\theta)$, $y=sin^3(\theta)$, $0 \le \theta \le \pi/2$.
$\frac{dx}{d \theta}=-3sin(\theta)cos^2(\theta)$
$\frac{dy}{d \theta}= 3sin^2 (\theta)cos( \theta)$
$S=2 \pi \int_{0}^{\pi/2} \ sin^3(\theta) \sqrt{(-3sin(\theta)cos^2(\theta))^2+(3sin^2(\theta)cos(\theta))^2}d \theta$
$=2 \pi \int_{0}^{\pi/2} \ sin^3(\theta) \sqrt{9sin^2 (\theta) cos^4(\theta)+9sin^4 (\theta)cos^2(\theta)}d \theta$
u-sub?
$\frac{dx}{d \theta}=-3sin(\theta)cos^2(\theta)$
$\frac{dy}{d \theta}= 3sin^2 (\theta)cos( \theta)$
$S=2 \pi \int_{0}^{\pi/2} \ sin^3(\theta) \sqrt{(-3sin(\theta)cos^2(\theta))^2+(3sin^2(\theta)cos(\theta))^2}d \theta$
$=2 \pi \int_{0}^{\pi/2} \ sin^3(\theta) \sqrt{9sin^2 (\theta) cos^4(\theta)+9sin^4 (\theta)cos^2(\theta)}d \theta$
u-sub?