Find Critical Points of Hessian Matrix

azatkgz
Messages
182
Reaction score
0
Please,check my solution.
Find critical points of the function f(x,y,z)=x^3+y^2+z^2+12xy+2z
and determine their types (degenerate or non-degenerate, Morse index for non-
degenerate).

Attempt

\frac{df}{dx}=3x^2+12y=0

\frac{df}{dy}=2y+12x=0

\frac{df}{dz}=2z+2=0

Critical points are at

x=24 y=-144 z=-1

x=0 y=0 z=-1

H(f)=\left|\begin{array}{l[cr]}6x&12&0\\12&2&0\\0&0&2\end{array}\right|


for x=24

det\left|\begin{array}{l[cr]}144&12&0\\12&2&0\\0&0&2\end{array}\right|=288 non-degenerate


for x=0


det\left|\begin{array}{l[cr]}0&12&0\\12&2&0\\0&0&2\end{array}\right|=-288 non-degenerate
 
Physics news on Phys.org
azatkgz said:
Please,check my solution.
Find critical points of the function f(x,y,z)=x^3+y^2+z^2+12xy+2z
and determine their types (degenerate or non-degenerate, Morse index for non-
degenerate).

Attempt

\frac{df}{dx}=3x^2+12y=0

\frac{df}{dy}=2y+12x=0

\frac{df}{dz}=2z+2=0

Critical points are at

x=24 y=-144 z=-1

x=0 y=0 z=-1

H(f)=\left|\begin{array}{l[cr]}6x&12&0\\12&2&0\\0&0&2\end{array}\right|


for x=24

det\left|\begin{array}{l[cr]}144&12&0\\12&2&0\\0&0&2\end{array}\right|=288 non-degenerate


for x=0


det\left|\begin{array}{l[cr]}0&12&0\\12&2&0\\0&0&2\end{array}\right|=-288 non-degenerate

keep going... are they minimum, maximum.. saddle points??
 
Morse index

for (0,0,-1)

det\left|\begin{array}{l[cr]}-\lambda &12&0\\12&2-\lambda &0\\0&0&2-\lambda\end{array}}\right|=0

(2-\lambda )(-\lambda(2-\lambda)-144)=0

\lambda_1=2,\lambda_2=1-\sqrt{145},\lambda_3=1+\sqrt{145}


for (24,-144,-1)



det\left|\begin{array}{l[cr]}144-\lambda &12&0\\12&2-\lambda &0\\0&0&2-\lambda\end{array}}\right|=0

(2-\lambda )((144-\lambda)(2-\lambda)-144)=0

\lambda_1=2,\lambda_2=73-\sqrt{5185},\lambda_3=73+\sqrt{5185}

Is it right?What we can say about maximum,minimum and saddle points?
 
azatkgz said:
Morse index

for (0,0,-1)

det\left|\begin{array}{l[cr]}-\lambda &12&0\\12&2-\lambda &0\\0&0&2-\lambda\end{array}}\right|=0

(2-\lambda )(-\lambda(2-\lambda)-144)=0

\lambda_1=2,\lambda_2=1-\sqrt{145},\lambda_3=1+\sqrt{145}


for (24,-144,-1)



det\left|\begin{array}{l[cr]}144-\lambda &12&0\\12&2-\lambda &0\\0&0&2-\lambda\end{array}}\right|=0

(2-\lambda )((144-\lambda)(2-\lambda)-144)=0

\lambda_1=2,\lambda_2=73-\sqrt{5185},\lambda_3=73+\sqrt{5185}

Is it right?What we can say about maximum,minimum and saddle points?

i didnt check you're calculus, but find what the sign of eigenvalues mean and you'll get you're answer.

bye
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top