Find exit speed at the bottom of the ramp using kinematics only

AI Thread Summary
The discussion centers on calculating the exit speed of a skier at the bottom of a ramp using kinematics, considering the effects of friction and air resistance. The skier's initial acceleration is 90% of that on a frictionless incline, and the speed record at the bottom of a 29-degree slope is 180 km/h. The initial calculations led to an exit speed of 223.7 km/h, but this was incorrect due to not accounting for the 90% acceleration factor. The correct approach involves adjusting the acceleration to reflect the frictional loss. Ultimately, the skier's ideal speed in the absence of air resistance is lower than initially calculated.
spartan55
Messages
4
Reaction score
0

Homework Statement


A professional skier's initial acceleration on fresh snow is 90% of the acceleration expected on a frictionless, inclined plane, the loss being due to friction. Due to air resistance, his acceleration slowly decreases as he picks up speed. The speed record on a mountain in Oregon is 180 kilometers per hour at the bottom of a 29.0deg slope that drops 197 m. What exit speed could a skier reach in the absence of air resistance (in km/hr)? What percentage of this ideal speed is lost to air resistance?


Homework Equations


We are only on kinematics...
(v_final)^2 = (v_initial)^2 + 2*(a_parallel)*(x_final - x_initial) , where a_parallel = g*sin(29)


The Attempt at a Solution


I used trig to solve for the length of the ramp:
l*sin29 = 197
l = 406.35 m
Then I plugged this into the above kinematics equation and solved for v_final:
(v_final)^2 = 0 + 2*g*sin(29)*(406.35 - 0)
v_final = 62.14 m/s
I converted this to km/hr:
62.14 m/1s * 1km/1000m * 3600s/1hr = 223.7 km/hr, but this isn't the correct answer. I'm not sure where I went wrong.
 
Physics news on Phys.org
spartan55 said:

Homework Statement


A professional skier's initial acceleration on fresh snow is 90% of the acceleration expected on a frictionless, inclined plane, the loss being due to friction. Due to air resistance, his acceleration slowly decreases as he picks up speed. The speed record on a mountain in Oregon is 180 kilometers per hour at the bottom of a 29.0deg slope that drops 197 m. What exit speed could a skier reach in the absence of air resistance (in km/hr)? What percentage of this ideal speed is lost to air resistance?


Homework Equations


We are only on kinematics...
(v_final)^2 = (v_initial)^2 + 2*(a_parallel)*(x_final - x_initial) , where a_parallel = g*sin(29)


The Attempt at a Solution


I used trig to solve for the length of the ramp:
l*sin29 = 197
l = 406.35 m
Then I plugged this into the above kinematics equation and solved for v_final:
(v_final)^2 = 0 + 2*g*sin(29)*(406.35 - 0)
v_final = 62.14 m/s
I converted this to km/hr:
62.14 m/1s * 1km/1000m * 3600s/1hr = 223.7 km/hr, but this isn't the correct answer. I'm not sure where I went wrong.
Look at the phrase in red, especially the 90%.
 
Ahh yes that is what I forgot. Thanks Sammy!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top