MHB Find length that minimizes the perimeter

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Length Perimeter
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $ABC$ be an equilateral triangle and let $D,\,E$ and $F$ be the points on the sides $AB,\,BC$ and $AC$ respectively such that $AD=2,\,AF=1$ and $FC=3$. If the triangle $DEF$ has minimum possible perimeter, find $AE$.
 
Mathematics news on Phys.org
[TIKZ]\coordinate [label=left:{$B$}] (B) at (0,0) ;
\coordinate [label=right:{$C$}] (C) at (4,0) ;
\coordinate [label=left:{$A$}] (A) at (60:4) ;
\coordinate [label=left:{$D$}] (D) at (60:2) ;
\coordinate [label=right:$F$] (F) at (2.5,2.6) ;
\coordinate [label=left:{$D'$}] (H) at (300:2) ;
\coordinate [label=left:{$A'$}] (K) at (300:4) ;
\coordinate [label=below right:$E$] (E) at (intersection of B--C and F--H) ;

\draw [very thick] (A) -- (B) -- (C) -- cycle ;
\draw (E) -- (D) -- (F) -- (H) ;
\draw (B) -- (K) -- (C) ;
\draw[dashed] (A) -- (E) ;\node at (0.2,0.9) {$2$} ;
\node at (1.2,2.6) {$2$} ;
\node at (2.45,3.2) {$1$} ;
\node at (3.4,1.6) {$3$} ;
\node at (0.2,-0.9) {$2$} ;[/TIKZ]
Let $A'BC$ be the reflection of $ABC$ in the line $BC$, with $D'$ the midpoint of $BA'$. The perimeter of $DEF$ is $DF + FE + ED = DF + FE + ED'$, and this is minimised when $FED'$ is a straight line (as in the diagram).

Now choose a coordinate system with $B$ as the origin and $C$ as the point $(4,0)$. Then $A = (4\cos60^\circ,4\sin60^\circ) = (2,2\sqrt3)$. Similarly, $F = \bigl(\frac52,\frac32\sqrt3)$ and $D' = (1,-\sqrt3)$. The line $FD'$ then has equation $y = \dfrac{5x-8}{\sqrt3}$. When $y=0$, $x=\frac85$. So $E = \bigl(\frac85,0\bigr)$.

Then $AE^2 = \bigl(2-\frac85\bigr)^2 + (2\sqrt3-0)^2 = \frac4{25} + 12 = \frac{304}{25}$, so $AE = \frac{\sqrt{304}}5 = \frac45\sqrt{19} \approx 3.487$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
2
Views
2K
Replies
2
Views
5K
Replies
13
Views
4K
Replies
4
Views
1K
Replies
4
Views
2K
Replies
5
Views
2K
Back
Top