MHB Find solutions in natural numbers

AI Thread Summary
The discussion centers on finding natural number solutions for the equation involving a series of fractions that sum to 5. Participants express enthusiasm for the problem, with one user congratulating another for their contributions. The equation features factorial terms in the numerators and products of linear expressions in the denominators. The focus remains on solving the equation accurately within the constraints of natural numbers. The thread highlights the collaborative effort in tackling complex mathematical problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the solutions in natural numbers for the following equation:

$$\frac{10}{x+10}+\frac{10\cdot 9}{(x+10)(x+9)}+\cdots+\frac{10\cdot 9\cdot 8 \cdots\cdot 3 \cdot 2 \cdot 1}{(x+10)(x+9)(x+8)\cdots(x+3)(x+2)(x+1)}=5$$
 
Mathematics news on Phys.org
anemone said:
Find the solutions in natural numbers for the following equation:

$$\frac{10}{x+10}+\frac{10\cdot 9}{(x+10)(x+9)}+\cdots+\frac{10\cdot 9\cdot 8 \cdots\cdot 3 \cdot 2 \cdot 1}{(x+10)(x+9)(x+8)\cdots(x+3)(x+2)(x+1)}=5$$

Let $S$ be the sum Let $x=1$. Then we have
$$S=\dfrac{1}{11}\sum_{n=1}^{10}n=5$$ so $x=1$ is a solution. Increasing $x$ will result in a smaller sum (as the denominators of the fractions will be larger), so the only solution is $x=1$.
 
greg1313 said:
Let $S$ be the sum Let $x=1$. Then we have
$$S=\dfrac{1}{11}\sum_{n=1}^{10}n=5$$ so $x=1$ is a solution. Increasing $x$ will result in a smaller sum (as the denominators of the fractions will be larger), so the only solution is $x=1$.
Awesome! (Bow)

-Dan
 
Good job, greg1313!(Cool)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
3
Views
1K
Replies
14
Views
2K
Replies
24
Views
3K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
Back
Top