MHB Find the eigenvalue of a linear map

Barioth
Messages
47
Reaction score
0
Hi everyone,
I have this linear map $$A:R^3 \rightarrow R^3$$

I have that $$A(v)=v-2(v\dot ô)ô); v,ô\in R^3 ;||ô||=1$$

I know that $$A(A(v))=v$$ this telling me that A is it's own inverse.
From there, how can I find the eigenvalue of A?
Thanks
 
Physics news on Phys.org
IF $A^2 = I$, then $A^2 - I = 0$, that is, $A$ satisfies the polynomial $x^2 - 1$.

This means the minimal polynomial of $A$ can only be:

$x^2 - 1, x - 1$ or $x + 1$.

Since $A \neq \pm\ I$, it must be that the minimal polynomial of $A$ is $x^2 - 1$, so the eigenvalues of $A$ are $\{-1,1\}$.
 
Thanks!
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top