MHB Find the height and base of a trapezium

  • Thread starter Thread starter Etrujillo
  • Start date Start date
  • Tags Tags
    Base Height
AI Thread Summary
The discussion centers on solving problems related to finding the height and base of a trapezium using the Pythagorean theorem. In problem #5, the user attempts to find the length of a leg marked "x" in a right triangle with a hypotenuse of 8 inches and one leg of 4 inches, ultimately calculating x as approximately 6.9 inches. In problem #6, the user divides the side marked "x" into three portions, using the Pythagorean theorem to find lengths of 3.6 feet and 5.3 feet for two segments, leading to a total of 20.9 feet for x. There is confusion regarding the calculations, particularly the assumption about the shorter length of a triangle being half the hypotenuse. Clarifications are requested to verify the accuracy of the calculations and reasoning.
Etrujillo
Messages
9
Reaction score
0
To start with problem #5 i cut the shape
Into 2, a triangle and a square, i know that the additional leg length to the triangle can be found by subtracting base 1 and base 2=4 so i have a triangle with a hypotenuse of 8 inches, 1 leg=4 and now i have to find the length of the other leg. The length of the other leg can be found by multiplying the length of the other leg by the square root of 3 to get (4×3squared)=6.9282 the area for that triangle would be 13.84. Now i have to find the missing side of x. It seems to be a rectangle, and i know the formula for that is length×width to get the area but i noticed a squared angle in the right bottom. Thats where i get lost. As for #6, i can start with finding out the missing leg of the triangle on the left which is half of its hypotenuse so i would divide 7÷2=3.5 then id get started with calculating the shorter length of the triangle on the right which would be half its length of hypotenuse to 8÷2=4 what i think i would do next is add 3.5+4+12= 19.5 as the value of x. Can anyone please verify if I am right? If not what did i do wrong?. Thank you

View attachment 8704
 

Attachments

  • 20181204_093318-3.jpg
    20181204_093318-3.jpg
    16.5 KB · Views: 101
Mathematics news on Phys.org
In problem 5, the side marked "x" is a leg of a right triangle with hypotenuse of length 8 in and the other leg of length 14- 10= 4 in. Using the Pythagorean theorem, 8^2= 64= 4^2+ x^2= 16+ x^2 so x^2= 64- 16= 48. x= \sqrt{48}= 4\sqrt{3} which is approximately 6.9 in. I am not sure why you then calculate areas. The problem posted only asks for the length x.

In problem 6, divide the side marked "x" into three portions by drawing perpendiculars from the upper vertices to the base. The leftmost portion is a leg of a right triangle with hypotenuse of length 7 ft and the other leg of length 6 ft. Use the Pythagorean theorem to get \sqrt{49- 36}= \sqrt{13} which is 3.6 to one decimal place. The middle portion has length the same as the top edge, 12 ft, and the right portion is one leg of a right triangle with hypotenuse of length 8 ft and one leg of length 6 ft. The right portion has length \sqrt{64- 36}= \sqrt{28}= 2\sqrt{7} which is 5.3 to one decimal place. x= 3.6+ 12+ 5.3= 20.9 ft.

I don't know why you think that "the shorter length of the triangle on the right which would be half its length of hypotenuse". Where did you get that idea?
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top