Find the magnitude of the acceleration of the particle.

AI Thread Summary
The discussion revolves around calculating the acceleration of a particle released between two fixed masses, 8.50 kg and 13.5 kg, positioned 50 cm apart. The initial attempt incorrectly used the distance between the masses instead of the distance from the particle to each mass. The correct approach involves determining the gravitational forces acting on the particle from both masses and calculating the net force. By applying the formula for gravitational force and considering the distances from the particle to each mass, the correct acceleration can be derived. Ultimately, the net acceleration is found by subtracting the forces acting on the particle from each mass.
saturn67
Messages
54
Reaction score
0
An 8.50 kg point mass and a 13.5 kg point mass are held in place 50.0 cm apart. A particle of mass m is released from a point between the two masses 19.0 cm from the 8.50 kg mass along the line connecting the two fixed masses.

Find the magnitude of the acceleration of the particle.

Fg=(Gm1m2)/r^2


G=6.67*10^-11
m1=8.50kg
m2=13.5
r=(50/2)/100=.25m

so Fg =((6.67*10^-11)*8.50*13.5)/(.25^2)
Fg=1.2246*10^-7

F=ma since particle close to 8.5kg
a= 1.2246*10^-7/8.50
=1.440*10^-8 m/s^2

why this answer wrong please help me
 
Physics news on Phys.org
You seem to be trying to calculate the force that exists between the 8.5 and the 13.5 kg masses (although the distance between them is 0.5 not .25m). But this question is really about mass m.


mass m is being pulled by two different forces...one from the 8.5 kg mass and the other from the 13.5 kg mass. It may help to draw a free body diagram of mass m and then write a net force equation for it. It is this net force that is responsible for the acceleration.
 
Last edited:
so Fg =((6.67*10^-11)*8.50*13.5)/(.5^2) = 3.6018*^-9 N

Fnet = F2+F1= F(m2+m1)

so a= Fg/(m2+m1) ?
 
bump, is this equation right

a= Fg/(m2+m1)
 
I figured it outyou take ((G)(8.5)(m))/(.19m)^2
=1.57E-8 m

then you take ((G)(13.5)(m))/(.31m)^2
=9.37E-9 m

now just subtract the bottom one from the top to get your acceleration.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top