Find the position of a pendulum as a function of time?

AI Thread Summary
To find the position of a pendulum as a function of time, the equation f(t) = 0.35cos(1.81t) is derived, where 0.35 represents the initial displacement from equilibrium. The period of the pendulum is calculated using T = 2π√(l/g), which helps determine the frequency. The value 1.81 is related to the angular frequency, derived from the pendulum's length and gravitational acceleration. The discussion highlights confusion regarding the interpretation of displacement and the relationship between the angle and the pendulum's motion. The thread concludes with the user expressing clarity on the topic, indicating a resolution to their confusion.
Camphi
Messages
2
Reaction score
0

Homework Statement


How do you find the position of a pendulum as a function of time?

Mass of bob: 2.0kg
String length (l): 3.0m

The pendulum is displaced as a distance of 0.35m from the equilibrium point and is then released. After 100 swings the maximum displacement of the pendulum has been reduced to 0.15m.

Homework Equations


[/B]
Period (T) of a pendulum: T = 2π√(l/g)

The Attempt at a Solution


The answer to the problem is f(t) = 0.35cos(1.81t) but I am not understanding how the 0.35 or the 1.81t is coming into play because I figured that if the angle is the point where the equilibrium point and the place where the pendulum is attached to a wall then the 0.35 would be opposite of this angle, not the adjacent of hypotenuse of the triangle created from the displacement of the pendulum. I also figured that the 0.35 was what the displacement was and I do not understand where the 1.81 came from at all.
 
Physics news on Phys.org
I have had an epiphany so moderators can lock this thread.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top